-
It is of considerable theoretical interest to study the effects of impurity on spin dynamics of quantum spin systems. In this paper, the dynamical properties of the one-dimensional quantum Ising model with symmetric and asymmetric link-impurity are investigated by the recursion method, respectively. The autocorrelation function $C(t)=\overline{\left\langle\sigma_j^x(t) \sigma_j^x(0)\right\rangle}$ and the associated spectral density $\Phi(\omega)=\int_{-\infty}^{+\infty} d t e^{i \omega t} C(t)$ are calculated. The Hamiltonian of the Ising model with link-impurity can be written as $H=-\frac{1}{2}\left(J_{j-1} \sigma_{j-1}^x \sigma_j^x+J_j \sigma_j^x \sigma_{j+1}^x\right)-\frac{1}{2} J \sum_{i \neq j, j-1}^N \sigma_i^x \sigma_{i+1}^x-\frac{1}{2} B \sum_i^N \sigma_i^z$. Where J is the nearest-neighbor exchange coupling of the main spin chain, B denotes the external transverse magnetic field, $\sigma_i^\alpha(\alpha=x, y, z)$ are Pauli matrices at site i.The constant 1/2 is introduced for the convenience of theoretical deduction, and N is the number of spins. The so-called link-impurity Jj(Jj-1) is randomly introduced, which denotes the exchange coupling between the jth spin and the (j+1)th spin (the (j-1)th spin).The symmetric and asymmetric link-impurity correspond to the case of Jj-1=Jj and Jj-1≠Jj, respectively. The periodic boundary conditions are assumed in the theoretical calculation.
After introducing the link-impurity, the original competition between B and J in the pure Ising model was broken. The dynamics of the system depends on synergistic effect of multiple factors, such as the mean spin coupling $\bar{J}$ between j and the link-impurity, the asymmetry degree between Jj-1 and Jj,and the strength of the external magnetic field. In calculation, the exchange couplings of the main spin chain are set $J \equiv 1$ to fix the energy scale. We first consider the effects of symmetric link-impurity, the reference values can be set Jj-1=Jj<J(e.g., 0.4, 0.6 or 0.8) or Jj-1=Jj>J(e.g., 1.2, 1.6, 2.0),which are called weak or strong impurity coupling. When the magnetic field B≥J(e.g.B=1, 1.5 or 2.0),it is found that the dynamics of the system exhibits a crossover from a collective-mode behavior to a central-peak behavior as the impurity strength Jj-1=Jj increase. Interestingly, for B<J(e.g., B=4 or 0.7),there are two crossovers that is a collective-mode-like behavior to a double-peak behavior, then to a central-peak one as Jj-1=Jj increase.
For the case of asymmetric link-impurity, the impurity configuration is more complex. Using the cooperation between Jj-1 and Jj,more freedom of regulation can be provided and the dynamical properties are more abundant. For the case of B≤J(e.g., B=0.5, 1.0),the system tends to exhibit a collective-mode behavior when the mean spin coupling $\bar{J}$,are weak, and a central-peak behavior when $\bar{J}$ are strong. However, when the asymmetry between Jj-1 and Jj is obvious, the system tends to exhibit a double- or multi-peak behavior. For the case of B>J(e.g., B=1.5, 2.0),when $\bar{J}$ are strong, it tends to exhibit a central-peak behavior. However, when the asymmetry between Jj-1 and Jj is evident, the bispectral feature (two spectral peak appear at $\omega_1 \neq 0$ and $\omega_2 \neq 0$) dominates the dynamics. Under the regulating effect of link-impurities, the crossover between different dynamic behaviors can be easily realized, and it is easier to stimulate new dynamic modes, such as the double-peak behavior, the collective-mode-like behavior or bispectral feature one. The results indicate that using link-impurity to manipulate the dynamics of quantum spin systems may be a new try.-
Keywords:
- Ising model /
- Link-impurity /
- Spin correlation function /
- Spectral density
-
[1] Young A P 1997 Phys. Rev. B 56 11691
[2] Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555
[3] Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412
[4] Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242
[5] Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404
[6] Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406
[7] Nunes M E S, Plascak J A, Florencio J 2004 Physica A 332 1
[8] Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414
[9] Li Y F, Kong X M 2013 Chin. Phys. B 22 037502
[10] Laflorencie N, Rieger H, Sandvik A W, Henelius P 2004 Phys. Rev. B 70 054430
[11] Li Y F, Shen Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501 (in Chinese) [李银芳,申银阳,孔祥木2012 物理学报 61 107501].
[12] Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121
[13] von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315
[14] Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119
[15] Crokidakis N, Nobre F D 2008 J. Phys.: Condens. Matter 20 145211
[16] Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505
[17] Balcerzak T, Szałowski K, Jaščur M 2020 J. Magn. Magn. Mater. 507 166825
[18] Silva R L, Guimarães P R C, Pereira A R 2005 Solid State Commun. 134 313
[19] Sousa J M, Leite R V, Landim R R, Costa Filho R N 2014 Physica B 438 78
[20] Huang X, Yang Z 2015 Solid State Commun. 204 28
[21] Çağlar T, Berker A N 2015 Phys. Rev. E 92 062131
[22] Mazzitello K I, Candia J, Albano E V, 2015 Phys. Rev. E 91 042118
[23] Hadjiagapiou I A, Velonakis I N 2018 Physica A 505 965
[24] Hadjiagapiou I A, Velonakis I N 2021 Physica A 578 126112
[25] Yuan X J 2023 Acta Phys. Sin. 72 087501 (in chinese) [袁晓娟 2023 物理学报72 087501]
[26] Boechat B, Cordeiro C, Florencio J, Sá Barreto F C, de Alcantara Bonfim, O F 2000 Phys. Rev. B 61 14327
[27] De Souza W L, Silva É d M, Martins P H L 2020 Phys. Rev. E 101 042104
[28] Nunes M E S, Silva É d M, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124
[29] Guimarães P R C, Plascak J A, De Alcantara Bonfim O F, Florencio J 2015 Phys. Rev. E 92 042115
[30] Hu F M, Ma T, Lin H Q, Gubernatis J E 2011 Phys. Rev. B 84 075414
[31] Liu Q, Liu C X, Xu C, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603
[32] Cirillo A, Mancini M, Giuliano D, Sodano P 2011 Nuclear Phys. B 852 235
[33] Sindona A, Goold J, Lo Gullo N, Lorenzo S, Plastina F 2013 Phys. Rev. Lett. 111 165303
[34] Li J, Wang Y 2009 Europhys. Lett. 88 17009
[35] Apollaro T J G, Francica G, Giuliano D, Falcone G, Palma G M, Plastina F 2017 Phys. Rev. B 96 155145
[36] Giuliano D, Campagnano G, Tagliacozzo A 2016 Eur. Phys. J. B 89 251
[37] Rommer S, Eggert S 2000 Phys. Rev. B 62 4370
[38] Yuan X J, Zhao J F, Wang H, Bu H X, Yuan H M, Zhao B Y, Kong X M 2021 Physica A 583 126279
[39] Eggert S, Affleck I 1992 Phys. Rev. B 46 10866
[40] Schuster C, Eckern U 2002 Ann. Phys. 12 901
[41] Huang X, Yang Z 2015 J. Magn. Magn. Mater. 381 372
[42] Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)
[43] Lee M H 1982 Phys. Rev. Lett. 49 1072
[44] Lee M H 1982 Phys. Rev. B 26 2547
[45] Lee M H 2000 Phys. Rev. E 62 1769
[46] Yuan X J, Wang C Y, Kong X M, Zhao J F, Wang H, Bu H X 2023 J. Magn. Magn. Mater. 572 170632
[47] Nunes M E S, Plascak J A 2024 Phys. Rev. E 109 014134
[48] Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277
[49] Florencio J, Lee M H 1987 Phys. Rev. B 35 1835
Metrics
- Abstract views: 80
- PDF Downloads: 1
- Cited By: 0