Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Link-impurity on spin dynamics of the one-dimensional quantum Ising model

Yuan Xiao-Juan

Citation:

Effects of Link-impurity on spin dynamics of the one-dimensional quantum Ising model

Yuan Xiao-Juan
PDF
Get Citation
  • It is of considerable theoretical interest to study the effects of impurity on spin dynamics of quantum spin systems. In this paper, the dynamical properties of the one-dimensional quantum Ising model with symmetric and asymmetric link-impurity are investigated by the recursion method, respectively. The autocorrelation function $C(t)=\overline{\left\langle\sigma_j^x(t) \sigma_j^x(0)\right\rangle}$ and the associated spectral density $\Phi(\omega)=\int_{-\infty}^{+\infty} d t e^{i \omega t} C(t)$ are calculated. The Hamiltonian of the Ising model with link-impurity can be written as $H=-\frac{1}{2}\left(J_{j-1} \sigma_{j-1}^x \sigma_j^x+J_j \sigma_j^x \sigma_{j+1}^x\right)-\frac{1}{2} J \sum_{i \neq j, j-1}^N \sigma_i^x \sigma_{i+1}^x-\frac{1}{2} B \sum_i^N \sigma_i^z$. Where J is the nearest-neighbor exchange coupling of the main spin chain, B denotes the external transverse magnetic field, $\sigma_i^\alpha(\alpha=x, y, z)$ are Pauli matrices at site i.The constant 1/2 is introduced for the convenience of theoretical deduction, and N is the number of spins. The so-called link-impurity Jj(Jj-1) is randomly introduced, which denotes the exchange coupling between the jth spin and the (j+1)th spin (the (j-1)th spin).The symmetric and asymmetric link-impurity correspond to the case of Jj-1=Jj and Jj-1Jj, respectively. The periodic boundary conditions are assumed in the theoretical calculation.
    After introducing the link-impurity, the original competition between B and J in the pure Ising model was broken. The dynamics of the system depends on synergistic effect of multiple factors, such as the mean spin coupling $\bar{J}$ between j and the link-impurity, the asymmetry degree between Jj-1 and Jj,and the strength of the external magnetic field. In calculation, the exchange couplings of the main spin chain are set $J \equiv 1$ to fix the energy scale. We first consider the effects of symmetric link-impurity, the reference values can be set Jj-1=Jj<J(e.g., 0.4, 0.6 or 0.8) or Jj-1=Jj>J(e.g., 1.2, 1.6, 2.0),which are called weak or strong impurity coupling. When the magnetic field BJ(e.g.B=1, 1.5 or 2.0),it is found that the dynamics of the system exhibits a crossover from a collective-mode behavior to a central-peak behavior as the impurity strength Jj-1=Jj increase. Interestingly, for BJ(e.g., B=4 or 0.7),there are two crossovers that is a collective-mode-like behavior to a double-peak behavior, then to a central-peak one as Jj-1=Jj increase.
    For the case of asymmetric link-impurity, the impurity configuration is more complex. Using the cooperation between Jj-1 and Jj,more freedom of regulation can be provided and the dynamical properties are more abundant. For the case of BJ(e.g., B=0.5, 1.0),the system tends to exhibit a collective-mode behavior when the mean spin coupling $\bar{J}$,are weak, and a central-peak behavior when $\bar{J}$ are strong. However, when the asymmetry between Jj-1 and Jj is obvious, the system tends to exhibit a double- or multi-peak behavior. For the case of BJ(e.g., B=1.5, 2.0),when $\bar{J}$ are strong, it tends to exhibit a central-peak behavior. However, when the asymmetry between Jj-1 and Jj is evident, the bispectral feature (two spectral peak appear at $\omega_1 \neq 0$ and $\omega_2 \neq 0$) dominates the dynamics. Under the regulating effect of link-impurities, the crossover between different dynamic behaviors can be easily realized, and it is easier to stimulate new dynamic modes, such as the double-peak behavior, the collective-mode-like behavior or bispectral feature one. The results indicate that using link-impurity to manipulate the dynamics of quantum spin systems may be a new try.
  • [1]

    Young A P 1997 Phys. Rev. B 56 11691

    [2]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555

    [3]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412

    [4]

    Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242

    [5]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404

    [6]

    Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406

    [7]

    Nunes M E S, Plascak J A, Florencio J 2004 Physica A 332 1

    [8]

    Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414

    [9]

    Li Y F, Kong X M 2013 Chin. Phys. B 22 037502

    [10]

    Laflorencie N, Rieger H, Sandvik A W, Henelius P 2004 Phys. Rev. B 70 054430

    [11]

    Li Y F, Shen Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501 (in Chinese) [李银芳,申银阳,孔祥木2012 物理学报 61 107501].

    [12]

    Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121

    [13]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315

    [14]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119

    [15]

    Crokidakis N, Nobre F D 2008 J. Phys.: Condens. Matter 20 145211

    [16]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505

    [17]

    Balcerzak T, Szałowski K, Jaščur M 2020 J. Magn. Magn. Mater. 507 166825

    [18]

    Silva R L, Guimarães P R C, Pereira A R 2005 Solid State Commun. 134 313

    [19]

    Sousa J M, Leite R V, Landim R R, Costa Filho R N 2014 Physica B 438 78

    [20]

    Huang X, Yang Z 2015 Solid State Commun. 204 28

    [21]

    Çağlar T, Berker A N 2015 Phys. Rev. E 92 062131

    [22]

    Mazzitello K I, Candia J, Albano E V, 2015 Phys. Rev. E 91 042118

    [23]

    Hadjiagapiou I A, Velonakis I N 2018 Physica A 505 965

    [24]

    Hadjiagapiou I A, Velonakis I N 2021 Physica A 578 126112

    [25]

    Yuan X J 2023 Acta Phys. Sin. 72 087501 (in chinese) [袁晓娟 2023 物理学报72 087501]

    [26]

    Boechat B, Cordeiro C, Florencio J, Sá Barreto F C, de Alcantara Bonfim, O F 2000 Phys. Rev. B 61 14327

    [27]

    De Souza W L, Silva É d M, Martins P H L 2020 Phys. Rev. E 101 042104

    [28]

    Nunes M E S, Silva É d M, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124

    [29]

    Guimarães P R C, Plascak J A, De Alcantara Bonfim O F, Florencio J 2015 Phys. Rev. E 92 042115

    [30]

    Hu F M, Ma T, Lin H Q, Gubernatis J E 2011 Phys. Rev. B 84 075414

    [31]

    Liu Q, Liu C X, Xu C, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603

    [32]

    Cirillo A, Mancini M, Giuliano D, Sodano P 2011 Nuclear Phys. B 852 235

    [33]

    Sindona A, Goold J, Lo Gullo N, Lorenzo S, Plastina F 2013 Phys. Rev. Lett. 111 165303

    [34]

    Li J, Wang Y 2009 Europhys. Lett. 88 17009

    [35]

    Apollaro T J G, Francica G, Giuliano D, Falcone G, Palma G M, Plastina F 2017 Phys. Rev. B 96 155145

    [36]

    Giuliano D, Campagnano G, Tagliacozzo A 2016 Eur. Phys. J. B 89 251

    [37]

    Rommer S, Eggert S 2000 Phys. Rev. B 62 4370

    [38]

    Yuan X J, Zhao J F, Wang H, Bu H X, Yuan H M, Zhao B Y, Kong X M 2021 Physica A 583 126279

    [39]

    Eggert S, Affleck I 1992 Phys. Rev. B 46 10866

    [40]

    Schuster C, Eckern U 2002 Ann. Phys. 12 901

    [41]

    Huang X, Yang Z 2015 J. Magn. Magn. Mater. 381 372

    [42]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)

    [43]

    Lee M H 1982 Phys. Rev. Lett. 49 1072

    [44]

    Lee M H 1982 Phys. Rev. B 26 2547

    [45]

    Lee M H 2000 Phys. Rev. E 62 1769

    [46]

    Yuan X J, Wang C Y, Kong X M, Zhao J F, Wang H, Bu H X 2023 J. Magn. Magn. Mater. 572 170632

    [47]

    Nunes M E S, Plascak J A 2024 Phys. Rev. E 109 014134

    [48]

    Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277

    [49]

    Florencio J, Lee M H 1987 Phys. Rev. B 35 1835

  • [1] Yin Xiang-Guo, Yu Hai-Ru, Hao Ya-Jiang, Zhang Yun-Bo. Properties of ground state and quench dynamics of one-dimensional contact repulsive single-spin flipped Fermi gases. Acta Physica Sinica, doi: 10.7498/aps.73.20231425
    [2] Yuan Xiao-Juan. Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain. Acta Physica Sinica, doi: 10.7498/aps.72.20230046
    [3] Zhang Ren-Qiang, Jiang Xiang-Yu, Yu Jiong-Chi, Zeng Chong, Gong Ming, Xu Shun. Calculation and optimization of correlation function in distillation method of lattice quantum chromodynamcis. Acta Physica Sinica, doi: 10.7498/aps.70.20210030
    [4] Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu. Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model. Acta Physica Sinica, doi: 10.7498/aps.70.20210631
    [5] Liu Xiao-Hang, Wang Yi-Ning, Qu Zi-Min, Di Zeng-Ru. Opinion formation model with co-evolution of individual behavior and social environment. Acta Physica Sinica, doi: 10.7498/aps.68.20182254
    [6] Yang Bo, Fan Min, Liu Wen-Qi, Chen Xiao-Song. Phase transition properties for the spatial public goods game with self-questioning mechanism. Acta Physica Sinica, doi: 10.7498/aps.66.196401
    [7] Liu Yan, Bao Jing-Dong. Generation and application of non-ergodic noise. Acta Physica Sinica, doi: 10.7498/aps.63.240503
    [8] Jiang Jian-Jun, Yang Cui-Hong, Liu Yong-Jun. A kind of ferromagnetic-antiferromagnetic alternating spin chain equivalent to the mixed spin Heisenberg chain. Acta Physica Sinica, doi: 10.7498/aps.61.067502
    [9] Luo Zhi, Yang Guan-Qiong, Di Zeng-Ru. Opinion formation on the social networks with geographic structure. Acta Physica Sinica, doi: 10.7498/aps.61.190509
    [10] Li Yin-Fang, Shen Yin-Yang, Kong Xiang-Mu. Effects of random external fields on the dynamics of the one-dimensional Blume-Capel model. Acta Physica Sinica, doi: 10.7498/aps.61.107501
    [11] Yuan Xiao-Juan, Zhao Bang-Yu, Chen Shu-Xia, Kong Xiang-Mu. Effects of next-nearest-neighbor interactions on the dynamics of random quantum Ising model. Acta Physica Sinica, doi: 10.7498/aps.59.1499
    [12] Zhou Jian-Huai, Deng Min-Yi, Tang Guo-Ning, Kong Ling-Jiang, Liu Mu-Ren. Controll of spatiotemporal chaos by applying feedback method based on the flocking algorithms. Acta Physica Sinica, doi: 10.7498/aps.58.6828
    [13] Wang Huai-Yu, Xia Qing. The total energy of Heisenberg ferromagnetic systems. Acta Physica Sinica, doi: 10.7498/aps.56.5466
    [14] Guo Yuan-Yuan, Chen Xiao-Song. Investigation of phase instability in the binary Gaussian core model. Acta Physica Sinica, doi: 10.7498/aps.54.5755
    [15] Sun Chun-Feng. The partition function and correlation functions of the Ising model on a diamond fractal lattices. Acta Physica Sinica, doi: 10.7498/aps.54.3768
    [16] Wang Yan-Shen. Boundary correlation functions of the six-vertex model with open boundary. Acta Physica Sinica, doi: 10.7498/aps.52.2700
    [17] Wang Yan-Shen. . Acta Physica Sinica, doi: 10.7498/aps.51.1458
    [18] Zhang Hai-Yan, GNgele, Ma Hong-Ru. . Acta Physica Sinica, doi: 10.7498/aps.51.1892
    [19] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, doi: 10.7498/aps.50.942
    [20] XU JING, CHEN HONG, ZHANG YU-MEI, FENG WEI-GUO. THEORETICAL STUDY OF LOW-ENERGY ELEMENTARY EXCITATIONS IN SPIN-PEIERLS SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.49.1550
Metrics
  • Abstract views:  80
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  11 December 2024

/

返回文章
返回