Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of link-impurity on spin dynamics of one-dimensional quantum Ising model

YUAN Xiaojuan

Citation:

Effects of link-impurity on spin dynamics of one-dimensional quantum Ising model

YUAN Xiaojuan
PDF
HTML
Get Citation
  • It is of considerable theoretical significance to study the effects of impurity on spin dynamics of quantum spin systems. In this paper, the dynamical properties of the one-dimensional quantum Ising model with symmetric and asymmetric link-impurity are investigated by the recursion method, respectively. The autocorrelation function $C\left( t \right) = \overline {\left\langle {\sigma _j^x\left( t \right)\sigma _j^x\left( 0 \right)} \right\rangle } $ and the associated spectral density $\varPhi \left( \omega \right) = \displaystyle\int_{ - \infty }^{ + \infty } {dt{e^{i\omega t}}C\left( t \right)} $ are calculated. The Hamiltonian of the Ising model with link-impurity can be written as$ H = - \displaystyle\frac{1}{2}({J_{j - 1}}\sigma _{j - 1}^x\sigma _j^x + {J_j}\sigma _j^x\sigma _{j + 1}^x) - \frac{1}{2}J\sum\limits_{i \ne j,j - 1}^N {\sigma _i^x\sigma _{i + 1}^x} - \frac{1}{2}B\sum\limits_i^N {\sigma _i^z} . $where $J$ is the nearest-neighbor exchange coupling of the main spin chain, $ B $ denotes the external transverse magnetic field, $\sigma _i^\alpha \left( {\alpha = x,y,z} \right)$ are Pauli matrices at site $ i $. The constant 1/2 is introduced for the convenience of theoretical deduction, and N is the number of spins. The so-called link-impurity $ {J_j} $ ($ {J_{j - 1}} $) is randomly introduced, which denotes the exchange coupling between the jth spin and the (j+1)th spin (the (j-1)th spin). The symmetric link-impurity and asymmetric link-impurity correspond to the case of $ {J_{j - 1}} = {J_j} $ and $ {J_{j - 1}} \ne {J_j} $, respectively. The periodic boundary conditions are assumed in the theoretical calculation.After introducing the link-impurity, the original competition between $ B $ and $J$ in the pure Ising model is broken. The dynamic behavior of the system depends on synergistic effect of multiple factors, such as the mean spin coupling $ \bar J $ between $J$ and the link-impurity, the asymmetry degree between $ {J_{j - 1}} $ and $ {J_j} $, and the strength of the external magnetic field. In calculation, the exchange couplings of the main spin chain are set to $J \equiv 1$ to fix the energy scale. We first consider the effects of symmetric link-impurity. The reference values can be set to $ {J_{j - 1}} = {J_j} \lt J $ (e.g. 0.4, 0.6 or 0.8) or $ {J_{j - 1}} = {J_j} \gt J $ (e.g. 1.2, 1.6, 2.0), which are called weak or strong impurity coupling. When the magnetic field $ B \geqslant J $ (e.g., $ B = 1 $, 1.5 or 2.0), it is found that the dynamic behavior of the system exhibits a crossover from a collective-mode behavior to a central-peak behavior as the impurity strength $ {J_{j - 1}} = {J_j} $ increases. Interestingly, for $ B \lt J $ (e.g. $ B = 0.4 $ or 0.7), there are two crossovers that are a collective-mode-like behavior to a double-peak behavior, then to a central-peak behavior as $ {J_{j - 1}} = {J_j} $ increases.For the case of asymmetric link-impurity, the impurity configuration is more complex. Using the cooperation between $ {J_{j - 1}} $ and $ {J_j} $, more freedoms of regulation can be provided and the dynamical properties are more abundant. For the case of $ B \leqslant J $ (e.g. $ B = 0.5 $, 1.0), the system tends to exhibit a collective-mode behavior when the mean spin coupling $ \bar J $ is weak, and a central-peak behavior when $ \bar J $ are strong. However, when the asymmetry between $ {J_{j - 1}} $ and $ {J_j} $ is obvious, the system tends to exhibit a double- or multi-peak behavior. For the case of $ B \gt J $ (e.g. $ B = 1.5 $, 2.0), when $ \bar J $ is weak or the asymmetry between $ {J_{j - 1}} $ and $ {J_j} $ is not obvious, the system tends to exhibit a collective-mode behavior. When $ \bar J $ is strong, it tends to show a central-peak behavior. However, when the asymmetry between $ {J_{j - 1}} $ and $ {J_j} $ is evident, the bispectral feature (two spectral peaks appear at $ {\omega _1} \ne 0 $ and $ {\omega _2} \ne 0 $) dominates the dynamics. Under the regulating effect of link-impurities, the crossover between different dynamic behaviors can be easily realized, and it is easier to stimulate new dynamic modes, such as the double-peak behavior, the collective-mode-like behavior or bispectral feature one. The results in this work indicate that using link-impurity to manipulate the dynamics of quantum spin systems may be a new try.
  • 图 1  对称型链接杂质在不同杂质耦合强度下的连分式系数$ {\varDelta _\nu } $, 其中横向磁场$ B = J \equiv 1 $, 杂质耦合强度取值为$ {J_{j - 1}} = {J_j} = 0.4 $, 0.6, 0.8, 1.0, 1.2, 1.4和1.6

    Figure 1.  Recurrants $ {\varDelta _\nu } $ for the symmetric type of link-impurity. The transverse magnetic field $ B = J \equiv 1 $, and the impurity coupling strength $ {J_{j - 1}} = {J_j} = 0.4 $, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6.

    图 2  对称型链接杂质在不同杂质耦合强度下的自旋关联函数$C\left( t \right)$(a)及谱密度$\varPhi \left( \omega \right)$(b), 其中横向磁场$ B = J \equiv 1 $, 杂质耦合强度$ {J_{j - 1}} = {J_j} = 0.4 $, 0.6, 0.8, 1.0和1.2

    Figure 2.  Spin autocorrelation function $C\left( t \right)$ (a) and spectral density $\varPhi \left( \omega \right)$ (b) for the symmetric type of link-impurity under different impurity coupling strengths. The transverse magnetic field $ B = J \equiv 1 $, and the impurity coupling strength $ {J_{j - 1}} = {J_j} = 0.4 $, 0.6, 0.8, 1.0 and 1.2.

    图 3  对称型链接杂质在不同杂质耦合强度下的谱密度$\varPhi \left( \omega \right)$, 图(a)—(d)中横向磁场的取值分别为$ B = 0.4 $, 0.7, 1.5和2.0, 主体格点自旋耦合$ J \equiv 1 $

    Figure 3.  Spectral densities $\varPhi \left( \omega \right)$ for symmetric type of link-impurity under different impurity coupling strength Without loss of generality, the parameter $ J \equiv 1 $, and the transverse magnetic field $ B = 0.4 $, 0.7, 1.5 and 2.0 in (a)–(d).

    图 4  固定横场$ B = J \equiv 1 $, 非对称型链接杂质在不同杂质耦合强度下的谱密度$\varPhi \left( \omega \right)$, 其中固定$ {J_{j - 1}} = J' $, 图(a)—(d)中$ {J_{j - 1}} $分别取值为0.2, 0.5, 1.0和1.4; $ {J_j} = J'' $的取值从0.2变化到1.8

    Figure 4.  Spectral densities for non-symmetric type of link-impurity under different impurity coupling strength. The transverse magnetic field $ B = J \equiv 1 $, and the impurity coupling strength $ {J_{j - 1}} = 0.2 $, 0.5, 1.0 and 1.4 are set in panels (a)–(d), respectively. The other impurity coupling strength $ {J_j} $ changes from 0.2 to 1.8.

    图 5  固定横场$ B = 0.5 = J/2 $, 非对称型链接杂质在不同杂质耦合强度下的谱密度, 其中固定$ {J_{j - 1}} = J' $, 图(a)—(f)中$ {J_{j - 1}} $分别取值为0.2, 0.5, 0.8, 1.2, 1.6, 和2.0, $ {J_j} = J'' $的取值从0.2变化到1.8

    Figure 5.  Spectral densities for non-symmetric type of link-impurity under different impurity coupling strength. The transverse magnetic field $ B = 0.5 = J/2 $, and the impurity coupling strength $ {J_{j - 1}} = 0.2 $, 0.5, 0.8, 1.2, 1.6 and 2.0 are set in panels (a)–(f), respectively. The other impurity coupling strength $ {J_j} $ changes from 0.2 to 1.8.

    图 6  固定横场$ B = 1.5 = 1.5 J $, 给出非对称型链接杂质在不同杂质耦合强度下的谱密度, 固定$ {J_{j - 1}} = J' $, 图(a)—(d)中的$ {J_{j - 1}} $分别取值为0.4, 0.8, 1.2和1.6; $ {J_j} = J'' $的取值从0.2变化到1.8

    Figure 6.  Spectral densities for non-symmetric type of link-impurity under different impurity coupling strength. The transverse magnetic field $ B = 1.5 = 1.5 J $, and the impurity coupling strength $ {J_{j - 1}} = 0.4 $, 0.8, 1.2和1.6 are set in panels (a)–(d), respectively. The other impurity coupling strength $ {J_j} $ changes from 0.2 to 1.8.

  • [1]

    Young A P 1997 Phys. Rev. B 56 11691Google Scholar

    [2]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [3]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [4]

    Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242Google Scholar

    [5]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404Google Scholar

    [6]

    Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406Google Scholar

    [7]

    Nunes M E S, Plascak J A, Florencio J 2004 Physica A 332 1Google Scholar

    [8]

    Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414Google Scholar

    [9]

    Li Y F, Kong X M 2013 Chin. Phys. B 22 037502Google Scholar

    [10]

    Laflorencie N, Rieger H, Sandvik A W, Henelius P 2004 Phys. Rev. B 70 054430Google Scholar

    [11]

    李银芳, 申银阳, 孔祥木 2012 物理学报 61 107501Google Scholar

    Li Y F, Shen Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501Google Scholar

    [12]

    Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121

    [13]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [14]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119Google Scholar

    [15]

    Crokidakis N, Nobre F D 2008 J. Phys. : Condens. Matter 20 145211Google Scholar

    [16]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [17]

    Balcerzak T, Szałowski K, Jaščur M 2020 J. Magn. Magn. Mater. 507 166825Google Scholar

    [18]

    Silva R L, Guimarães P R C, Pereira A R 2005 Solid State Commun. 134 313Google Scholar

    [19]

    Sousa J M, Leite R V, Landim R R, Costa Filho R N 2014 Physica B 438 78Google Scholar

    [20]

    Huang X, Yang Z 2015 Solid State Commun. 204 28Google Scholar

    [21]

    Çağlar T, Berker A N 2015 Phys. Rev. E 92 062131

    [22]

    Mazzitello K I, Candia J, Albano E V, 2015 Phys. Rev. E 91 042118

    [23]

    Hadjiagapiou I A, Velonakis I N 2018 Physica A 505 965Google Scholar

    [24]

    Hadjiagapiou I A, Velonakis I N 2021 Physica A 578 126112Google Scholar

    [25]

    Yuan X J 2023 Acta Phys. Sin. 72 087501 (in chinese) [袁晓娟 2023 物理学报 72 087501]Google Scholar

    Yuan X J 2023 Acta Phys. Sin. 72 087501 (in chinese)Google Scholar

    [26]

    Boechat B, Cordeiro C, Florencio J, Sá Barreto F C, de Alcantara Bonfim O F 2000 Phys. Rev. B 61 14327Google Scholar

    [27]

    De Souza W L, de Mello Silva É, Martins P H L 2020 Phys. Rev. E 101 042104

    [28]

    Nunes M E S, de Mello Silva É, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124

    [29]

    Guimarães P R C, Plascak J A, De Alcantara Bonfim O F, Florencio J 2015 Phys. Rev. E 92 042115

    [30]

    Hu F M, Ma T, Lin H Q, Gubernatis J E 2011 Phys. Rev. B 84 075414Google Scholar

    [31]

    Liu Q, Liu C X, Xu C, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603Google Scholar

    [32]

    Cirillo A, Mancini M, Giuliano D, Sodano P 2011 Nuclear Phys. B 852 235Google Scholar

    [33]

    Sindona A, Goold J, Lo Gullo N, Lorenzo S, Plastina F 2013 Phys. Rev. Lett. 111 165303Google Scholar

    [34]

    Li J, Wang Y P 2009 Europhys. Lett. 88 17009Google Scholar

    [35]

    Apollaro T J G, Francica G, Giuliano D, Falcone G, Palma G M, Plastina F 2017 Phys. Rev. B 96 155145Google Scholar

    [36]

    Giuliano D, Campagnano G, Tagliacozzo A 2016 Eur. Phys. J. B 89 251Google Scholar

    [37]

    Rommer S, Eggert S 2000 Phys. Rev. B 62 4370Google Scholar

    [38]

    Yuan X J, Zhao J F, Wang H, Bu H X, Yuan H M, Zhao B Y, Kong X M 2021 Physica A 583 126279Google Scholar

    [39]

    Eggert S, Affleck I 1992 Phys. Rev. B 46 10866Google Scholar

    [40]

    Schuster C, Eckern U 2002 Ann. Phys. 12 901

    [41]

    Huang X, Yang Z 2015 J. Magn. Magn. Mater. 381 372Google Scholar

    [42]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag

    [43]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [44]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [45]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [46]

    Yuan X J, Wang C Y, Kong X M, Zhao J F, Wang H, Bu H X 2023 J. Magn. Magn. Mater. 572 170632Google Scholar

    [47]

    Nunes M E S, Plascak J A 2024 Phys. Rev. E 109 014134Google Scholar

    [48]

    Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [49]

    Florencio J, Lee M H 1987 Phys. Rev. B 35 1835Google Scholar

  • [1] Yin Xiang-Guo, Yu Hai-Ru, Hao Ya-Jiang, Zhang Yun-Bo. Properties of ground state and quench dynamics of one-dimensional contact repulsive single-spin flipped Fermi gases. Acta Physica Sinica, doi: 10.7498/aps.73.20231425
    [2] Yuan Xiao-Juan. Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain. Acta Physica Sinica, doi: 10.7498/aps.72.20230046
    [3] Zhang Ren-Qiang, Jiang Xiang-Yu, Yu Jiong-Chi, Zeng Chong, Gong Ming, Xu Shun. Calculation and optimization of correlation function in distillation method of lattice quantum chromodynamcis. Acta Physica Sinica, doi: 10.7498/aps.70.20210030
    [4] Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu. Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model. Acta Physica Sinica, doi: 10.7498/aps.70.20210631
    [5] Liu Xiao-Hang, Wang Yi-Ning, Qu Zi-Min, Di Zeng-Ru. Opinion formation model with co-evolution of individual behavior and social environment. Acta Physica Sinica, doi: 10.7498/aps.68.20182254
    [6] Yang Bo, Fan Min, Liu Wen-Qi, Chen Xiao-Song. Phase transition properties for the spatial public goods game with self-questioning mechanism. Acta Physica Sinica, doi: 10.7498/aps.66.196401
    [7] Liu Yan, Bao Jing-Dong. Generation and application of non-ergodic noise. Acta Physica Sinica, doi: 10.7498/aps.63.240503
    [8] Jiang Jian-Jun, Yang Cui-Hong, Liu Yong-Jun. A kind of ferromagnetic-antiferromagnetic alternating spin chain equivalent to the mixed spin Heisenberg chain. Acta Physica Sinica, doi: 10.7498/aps.61.067502
    [9] Luo Zhi, Yang Guan-Qiong, Di Zeng-Ru. Opinion formation on the social networks with geographic structure. Acta Physica Sinica, doi: 10.7498/aps.61.190509
    [10] Li Yin-Fang, Shen Yin-Yang, Kong Xiang-Mu. Effects of random external fields on the dynamics of the one-dimensional Blume-Capel model. Acta Physica Sinica, doi: 10.7498/aps.61.107501
    [11] Yuan Xiao-Juan, Zhao Bang-Yu, Chen Shu-Xia, Kong Xiang-Mu. Effects of next-nearest-neighbor interactions on the dynamics of random quantum Ising model. Acta Physica Sinica, doi: 10.7498/aps.59.1499
    [12] Zhou Jian-Huai, Deng Min-Yi, Tang Guo-Ning, Kong Ling-Jiang, Liu Mu-Ren. Controll of spatiotemporal chaos by applying feedback method based on the flocking algorithms. Acta Physica Sinica, doi: 10.7498/aps.58.6828
    [13] Wang Huai-Yu, Xia Qing. The total energy of Heisenberg ferromagnetic systems. Acta Physica Sinica, doi: 10.7498/aps.56.5466
    [14] Guo Yuan-Yuan, Chen Xiao-Song. Investigation of phase instability in the binary Gaussian core model. Acta Physica Sinica, doi: 10.7498/aps.54.5755
    [15] Sun Chun-Feng. The partition function and correlation functions of the Ising model on a diamond fractal lattices. Acta Physica Sinica, doi: 10.7498/aps.54.3768
    [16] Wang Yan-Shen. Boundary correlation functions of the six-vertex model with open boundary. Acta Physica Sinica, doi: 10.7498/aps.52.2700
    [17] Wang Yan-Shen. . Acta Physica Sinica, doi: 10.7498/aps.51.1458
    [18] Zhang Hai-Yan, GNgele, Ma Hong-Ru. . Acta Physica Sinica, doi: 10.7498/aps.51.1892
    [19] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, doi: 10.7498/aps.50.942
    [20] XU JING, CHEN HONG, ZHANG YU-MEI, FENG WEI-GUO. THEORETICAL STUDY OF LOW-ENERGY ELEMENTARY EXCITATIONS IN SPIN-PEIERLS SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.49.1550
Metrics
  • Abstract views:  224
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  03 October 2024
  • Accepted Date:  10 November 2024
  • Available Online:  11 December 2024

/

返回文章
返回