Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model

Yuan Xiao-Juan Wang Hui Zhao Bang-Yu Zhao Jing-Fen Ming Jing Geng Yan-Lei Zhang Kai-Yu

Citation:

Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model

Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu
PDF
HTML
Get Citation
  • The dynamical properties of quantum spin systems are a hot topic of research in statistical and condensed matter physics. In this paper, the dynamics of one-dimensional quantum Ising model with both transverse and longitudinal magnetic field (LMF) is investigated by the recursion method. The time-dependent spin autocorrelation function $C\left( t \right) = \overline {\left\langle {\sigma _j^x\left( t \right)\sigma _j^x\left( 0 \right)} \right\rangle } $ and corresponding spectral density $\varPhi \left( \omega \right)$ are calculated. The Hamiltonian of the model system can be written as $H = - \dfrac{1}{2}J\displaystyle\sum\limits_i^N {\sigma _i^x\sigma _{i + 1}^x - \dfrac{1}{2}\displaystyle\sum\limits_i^N {B_i^x\sigma _i^x} } - \dfrac{1}{2}\displaystyle\sum\limits_i^N {B_i^z\sigma _i^z}$. This work focuses mainly on the effects of LMF ($ B_i^x $) on spin dynamics of the Ising system, and both uniform LMF and random LMF are considered respectively. Without loss of generality, the transverse magnetic field $ B_i^z = 1 $ is set in the numerical calculation, which fixes the energy scale. The results show that the uniform LMF can induce crossovers between different dynamical behaviors (e.g. independent spins precessing, collective-mode behavior or central-peak behavior) and drive multiple vibrational modes (multiple-peaked behavior) when spin interaction ($ J $) is weak. However, the effect of uniform LMF is not obvious when spin interaction is strong. For the case of random LMF, the effects of bimodal-type and Gaussian-type random LMF are investigated, respectively. The dynamical results under the two types of random LMFs are quite different and highly dependent on many factors, such as the mean values ($ {B_1} $, $ {B_2} $ and $ {B_x} $) or the standard deviation ($ \sigma $) of random distributions. The nonsymmetric bimodal-type random LMF ($ {B_1} \ne {B_2} $) may induce new vibrational modes easily. The dynamical behaviors under the Gaussian-type random LMF are more abundant than under the bimodal-type random LMF. When $ \sigma $ is small, the system undergoes two crossovers: from a collective-mode behavior to a double-peaked behavior, and then to a central-peak behavior as the mean value $ {B_x} $ increases. However, when $ \sigma $ is large, the system presents only a central-peak behavior. For both cases of uniform LMF and random LMF, it is found that the central-peak behavior of the system is maintained when the proportion of LMF is large. This conclusion can be generalized that the emergence of noncommutative terms (noncommutative with the transverse-field term $\displaystyle\sum\nolimits_i^N {B_i^z\sigma _i^z}$) in Hamiltonian will enhance the central peak behavior. Therefore, noncommutative terms, such as next-nearest-neighbor spin interactions, Dzyaloshinskii-Moryia interactions, impurities, four-spin interactions, etc., can be added to the system Hamiltonian to modulate the dynamical properties. This provides a new direction for the future study of spin dynamics.
      Corresponding author: Yuan Xiao-Juan, yuanxiaojuan@163.com
    • Funds: Project supported by the Natural Science Foundation of China (Grant No. 11747132), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J18KB104), and the Young Doctoral Support Program of Qilu Normal University, China (Grant Nos. 2017L0603, 2017L0604, QBJH19-0006)
    [1]

    Plascak J A, Pires A S T, Sá Barreto F C 1982 Solid State Commun. 44 787Google Scholar

    [2]

    Plascak J A, Sá Barreto F C, Pires A S T, Goncalves L L 1983 J. Phys. C: Solid State Phys. 16 49Google Scholar

    [3]

    Watarai S, Matsubara T 1984 J Phys. Soc. Jpn. 53 3648Google Scholar

    [4]

    Levitsky R R, Zachek I R, Mits E V, Grigas J, Paprotny W 1986 Ferroelectrics 67 109Google Scholar

    [5]

    Wu W, Ellman B, Rosenbaum T F, Aeppli G, Reich D H 1991 Phys. Rev. Lett. 67 2076

    [6]

    Chernodub M N, Lundgren M, Niemi A J 2011 Phys. Rev. E 83 011126Google Scholar

    [7]

    Storm C, Nelson P C 2003 Phys. Rev. E 67 051906

    [8]

    Faure Q, Takayoshi S, Petit S, Simonet V, Raymond S, Regnault L P, Boehm M, White J S, Månsson M, Rüegg C, Lejay P, Canals B, Lorenz T, Furuya S C, Giamarchi T, Grenier B 2018 Nature Phys. 14 716Google Scholar

    [9]

    Jia X, Chakravarty S 2006 Phys. Rev. B 74 172414Google Scholar

    [10]

    Rønnow H M, Parthasarathy R, Jensen J, Aeppli G, Rosenbaum T F, McMorrow D F 2005 Science 308 389

    [11]

    Fogedby H C 1978 J. Phys. C: Solid State Phys. 11 2801Google Scholar

    [12]

    Sen S, Mahanti S D, Cai Z X 1991 Phys. Rev. B 43 10990Google Scholar

    [13]

    Sen P 1997 Phys. Rev. B 55 11367Google Scholar

    [14]

    Osenda O, Huang Z, Kais S 2003 Phys. Rev. A 67 062321Google Scholar

    [15]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [16]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404

    [17]

    Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121

    [18]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [19]

    Hadjiagapiou I A 2011 Physica A 390 2229Google Scholar

    [20]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [21]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119

    [22]

    Crokidakis N, Nobre F D 2008 J. Phys.: Condens. Matter 20 145211

    [23]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [24]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432Google Scholar

    [25]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307Google Scholar

    [26]

    Senthil T 1998 Phys. Rev. B 57 8375Google Scholar

    [27]

    Dmitriev D V, Krivnov V Y 2004 Phys. Rev. B 70 144414Google Scholar

    [28]

    Neto M A, De Sousa J R 2013 Physica A 392 1Google Scholar

    [29]

    Corrêa Silva E V, Skea J E F, Rojas O, De Souza S M, Thomaz M T 2008 Physica A 387 5117Google Scholar

    [30]

    Do Nascimento D A, Neto M A, De Sousa J R, Pacobahyba J T 2012 J. Magn. Magn. Mater. 324 2429

    [31]

    Do Nascimento D A, Pacobahyba J T, Neto M A, Salmon O D R, Plascak J A 2017 Physica A 474 224

    [32]

    Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X, Sun X F 2012 Phys. Rev. B 85 134412Google Scholar

    [33]

    Kopeć T K, Usadel K D, Büttner G 1989 Phys. Rev. B 39 12418

    [34]

    Ovchinnikov A A, Dmitriev D V, Krivnov V Y, Cheranovskii V O 2003 Phys. Rev. B 68 214406Google Scholar

    [35]

    Liu Z Q, Jiang S R, Kong X M, Xu Y L 2017 Physica A 473 536

    [36]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)

    [37]

    Mezei F, Murani A P 1979 J. Magn. Magn. Mater. 14 211Google Scholar

    [38]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [39]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [40]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [41]

    Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [42]

    Sur A, Jasnow D, Lowe I J 1975 Phys. Rev. B 12 3845Google Scholar

    [43]

    Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242Google Scholar

    [44]

    袁晓娟, 赵邦宇, 陈淑霞, 孔祥木 2010 物理学报 59 1499Google Scholar

    Yuan X J, Zhao B Y, Chen S X, Kong X M 2010 Acta Phys. Sin. 59 1499Google Scholar

    [45]

    Nunes M E S, De Mello Silva É, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124

    [46]

    Li Y F, Kong X M 2013 Chin. Phys. B 22 037502Google Scholar

    [47]

    李银芳, 申银阳, 孔祥木 2012 物理学报 61 107501Google Scholar

    Li Y F, She Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501Google Scholar

    [48]

    Huang X, Yang Z 2015 Solid State Commun. 204 28Google Scholar

    [49]

    De Souza W L, De Mello Silva É, Martins P H L 2020 Phys. Rev. E 101 042104

  • 图 1  横场取值$B_i^z = 1$, 纵场取值$ B_i^x = 0 $, 0.5, 1.0, 1.5和2.0, (a)−(d)分别对应自旋耦合相互作用参数J = 0.1, 0.5, 1.0和1.5时的自旋关联函数

    Figure 1.  Take the transverse magnetic field $B_i^z = 1$ and the longitudinal magnetic field $ B_i^x = 0 $, 0.5, 1.0, 1.5 and 2.0, respectively. Spin autocorrelation functions $C\left( t \right)$ for different values of spin interactions (e.g., J = 0.1, 0.5, 1.0 and 1.5) are given in (a)−(d), respectively.

    图 2  横场取值$B_i^z = 1$, 纵场取值$ B_i^x = 0 $, 0.5, 1.0, 1.5和2.0, (a)−(d)分别对应自旋耦合相互作用参数J = 0.1, 0.5, 1.0和1.5时的谱密度.

    Figure 2.  Take the transverse magnetic field $B_i^z = 1$ and the longitudinal magnetic field $ B_i^x = 0 $, 0.5, 1.0, 1.5 and 2.0, respectively. The corresponding spectral density $\varPhi \left( \omega \right)$ for different values of spin interactions (e.g., J = 0.1, 0.5, 1.0 and 1.5) are given in (a)−(d), respectively.

    图 3  随机纵场满足双模分布时的自旋关联函数和谱密度 (a), (b)对应$ {B_1} = 1.3 $$ {B_2} = 0.7 $时的结果; (c), (d)为$ {B_1} = 1.8 $$ {B_2} = 0.2 $时的结果

    Figure 3.  Spin autocorrelation functions and the corresponding spectral densities for bimodal-type random longitudinal magnetic field. The results for $ {B_1} = 1.3 $ and $ {B_2} = 0.7 $ are given in (a) and (b), and the results for $ {B_1} = 1.8 $ and $ {B_2} = 0.2 $ are given in (c) and (d), respectively.

    图 4  随机纵场满足高斯分布时的谱密度 (a)−(d)分别对应$ \sigma = 0.3, {\text{ }}0.8, {\text{ }}1.0, {\text{ }}1.8 $时的结果.

    Figure 4.  Spectral densities for Gaussian-type random longitudinal magnetic field. The results for $ \sigma = 0.3, {\text{ }}0.8, {\text{ }}1.0 $ and 1.8 are given in (a)−(d), respectively.

  • [1]

    Plascak J A, Pires A S T, Sá Barreto F C 1982 Solid State Commun. 44 787Google Scholar

    [2]

    Plascak J A, Sá Barreto F C, Pires A S T, Goncalves L L 1983 J. Phys. C: Solid State Phys. 16 49Google Scholar

    [3]

    Watarai S, Matsubara T 1984 J Phys. Soc. Jpn. 53 3648Google Scholar

    [4]

    Levitsky R R, Zachek I R, Mits E V, Grigas J, Paprotny W 1986 Ferroelectrics 67 109Google Scholar

    [5]

    Wu W, Ellman B, Rosenbaum T F, Aeppli G, Reich D H 1991 Phys. Rev. Lett. 67 2076

    [6]

    Chernodub M N, Lundgren M, Niemi A J 2011 Phys. Rev. E 83 011126Google Scholar

    [7]

    Storm C, Nelson P C 2003 Phys. Rev. E 67 051906

    [8]

    Faure Q, Takayoshi S, Petit S, Simonet V, Raymond S, Regnault L P, Boehm M, White J S, Månsson M, Rüegg C, Lejay P, Canals B, Lorenz T, Furuya S C, Giamarchi T, Grenier B 2018 Nature Phys. 14 716Google Scholar

    [9]

    Jia X, Chakravarty S 2006 Phys. Rev. B 74 172414Google Scholar

    [10]

    Rønnow H M, Parthasarathy R, Jensen J, Aeppli G, Rosenbaum T F, McMorrow D F 2005 Science 308 389

    [11]

    Fogedby H C 1978 J. Phys. C: Solid State Phys. 11 2801Google Scholar

    [12]

    Sen S, Mahanti S D, Cai Z X 1991 Phys. Rev. B 43 10990Google Scholar

    [13]

    Sen P 1997 Phys. Rev. B 55 11367Google Scholar

    [14]

    Osenda O, Huang Z, Kais S 2003 Phys. Rev. A 67 062321Google Scholar

    [15]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [16]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404

    [17]

    Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121

    [18]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [19]

    Hadjiagapiou I A 2011 Physica A 390 2229Google Scholar

    [20]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [21]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119

    [22]

    Crokidakis N, Nobre F D 2008 J. Phys.: Condens. Matter 20 145211

    [23]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [24]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432Google Scholar

    [25]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307Google Scholar

    [26]

    Senthil T 1998 Phys. Rev. B 57 8375Google Scholar

    [27]

    Dmitriev D V, Krivnov V Y 2004 Phys. Rev. B 70 144414Google Scholar

    [28]

    Neto M A, De Sousa J R 2013 Physica A 392 1Google Scholar

    [29]

    Corrêa Silva E V, Skea J E F, Rojas O, De Souza S M, Thomaz M T 2008 Physica A 387 5117Google Scholar

    [30]

    Do Nascimento D A, Neto M A, De Sousa J R, Pacobahyba J T 2012 J. Magn. Magn. Mater. 324 2429

    [31]

    Do Nascimento D A, Pacobahyba J T, Neto M A, Salmon O D R, Plascak J A 2017 Physica A 474 224

    [32]

    Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X, Sun X F 2012 Phys. Rev. B 85 134412Google Scholar

    [33]

    Kopeć T K, Usadel K D, Büttner G 1989 Phys. Rev. B 39 12418

    [34]

    Ovchinnikov A A, Dmitriev D V, Krivnov V Y, Cheranovskii V O 2003 Phys. Rev. B 68 214406Google Scholar

    [35]

    Liu Z Q, Jiang S R, Kong X M, Xu Y L 2017 Physica A 473 536

    [36]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)

    [37]

    Mezei F, Murani A P 1979 J. Magn. Magn. Mater. 14 211Google Scholar

    [38]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [39]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [40]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [41]

    Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [42]

    Sur A, Jasnow D, Lowe I J 1975 Phys. Rev. B 12 3845Google Scholar

    [43]

    Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242Google Scholar

    [44]

    袁晓娟, 赵邦宇, 陈淑霞, 孔祥木 2010 物理学报 59 1499Google Scholar

    Yuan X J, Zhao B Y, Chen S X, Kong X M 2010 Acta Phys. Sin. 59 1499Google Scholar

    [45]

    Nunes M E S, De Mello Silva É, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124

    [46]

    Li Y F, Kong X M 2013 Chin. Phys. B 22 037502Google Scholar

    [47]

    李银芳, 申银阳, 孔祥木 2012 物理学报 61 107501Google Scholar

    Li Y F, She Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501Google Scholar

    [48]

    Huang X, Yang Z 2015 Solid State Commun. 204 28Google Scholar

    [49]

    De Souza W L, De Mello Silva É, Martins P H L 2020 Phys. Rev. E 101 042104

  • [1] Yuan Xiao-Juan. Effects of Link-impurity on spin dynamics of the one-dimensional quantum Ising model. Acta Physica Sinica, 2025, 74(3): . doi: 10.7498/aps.74.20241390
    [2] Sun Zhen-Hui, Hu Li-Zhen, Xu Yu-Liang, Kong Xiang-Mu. Quantum coherence and mutual information of mixed spin-(1/2, 5/2) Ising-XXZ model on quasi-one-dimensional lattices. Acta Physica Sinica, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] Yuan Xiao-Juan. Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain. Acta Physica Sinica, 2023, 72(8): 087501. doi: 10.7498/aps.72.20230046
    [4] Liu Xiao-Hang, Wang Yi-Ning, Qu Zi-Min, Di Zeng-Ru. Opinion formation model with co-evolution of individual behavior and social environment. Acta Physica Sinica, 2019, 68(11): 118902. doi: 10.7498/aps.68.20182254
    [5] Yang Bo, Fan Min, Liu Wen-Qi, Chen Xiao-Song. Phase transition properties for the spatial public goods game with self-questioning mechanism. Acta Physica Sinica, 2017, 66(19): 196401. doi: 10.7498/aps.66.196401
    [6] Li Yan. Theory of density-density correlations between ultracold Bosons released from optical lattices. Acta Physica Sinica, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [7] Liu Yan, Bao Jing-Dong. Generation and application of non-ergodic noise. Acta Physica Sinica, 2014, 63(24): 240503. doi: 10.7498/aps.63.240503
    [8] Luo Zhi, Yang Guan-Qiong, Di Zeng-Ru. Opinion formation on the social networks with geographic structure. Acta Physica Sinica, 2012, 61(19): 190509. doi: 10.7498/aps.61.190509
    [9] Yuan Xiao-Juan, Zhao Bang-Yu, Chen Shu-Xia, Kong Xiang-Mu. Effects of next-nearest-neighbor interactions on the dynamics of random quantum Ising model. Acta Physica Sinica, 2010, 59(3): 1499-1506. doi: 10.7498/aps.59.1499
    [10] Shao Yuan-Zhi, Zhong Wei-Rong, Lu Hua-Quan, Lei Shi-Fu. Nonequilibrium dynamic phase transition in a kinetic Ising spin system. Acta Physica Sinica, 2006, 55(4): 2057-2063. doi: 10.7498/aps.55.2057
    [11] Sun Chun-Feng. The partition function and correlation functions of the Ising model on a diamond fractal lattices. Acta Physica Sinica, 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [12] Wang Yan-Shen. Boundary correlation functions of the six-vertex model with open boundary. Acta Physica Sinica, 2003, 52(11): 2700-2705. doi: 10.7498/aps.52.2700
    [13] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [14] ZHANG GUO-MIN, YANG CHUAN-ZHANG. MONTE CARLO STUDY OF THE ORDER OF PHASE TRANSITION OF A MULTISPIN INTERACTIONS ISING MODEL. Acta Physica Sinica, 1993, 42(10): 1680-1683. doi: 10.7498/aps.42.1680
    [15] Teng Bao-hua. GREEN'S FUNCTION APPROACH TO 3-DIMENSIONAL ISING MODEL. Acta Physica Sinica, 1991, 40(5): 826-832. doi: 10.7498/aps.40.826
    [16] MA YU-QIANG, LI ZHEN-YA. STUDY OF A QUANTUM TRANSVERSE ISING MODEL WITH RANDOM FIELDS. Acta Physica Sinica, 1990, 39(9): 1480-1487. doi: 10.7498/aps.39.1480
    [17] JIA YUN-FA, WU HANG-SHENG. THE CRITICAL THICKNESS d0 AND THE CURVES OF THE LONGITUDINAL CRITICAL CURRENT. Acta Physica Sinica, 1984, 33(5): 684-688. doi: 10.7498/aps.33.684
    [18] XU WEN-LAN, LI YIN-YUAN. STATISTICAL THEORY OF I(1) MODEL ANTIFERROMAGNE-TISM ON A FACE CENTERED CUBIC LATTICE WITH NEAREST-NEIGHBOR INTERACTION——A SERIES EXPANSION METHOD. Acta Physica Sinica, 1981, 30(12): 1624-1636. doi: 10.7498/aps.30.1624
    [19] SHI HE, HAO BAI-LIN. CLOSED-FORM APPROXIMATION FOR THE 3-DIMENSIONAL ISING MODEL (Ⅳ)——THE APPROXIMATE INTERPOLATION FORMULA FOR THE PARTITION FUNCTION. Acta Physica Sinica, 1981, 30(9): 1234-1241. doi: 10.7498/aps.30.1234
    [20] ИСКЛЮЧЕНИЕ ПРОДОЛЬНЫХ ПОЛЯ В КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКЕ. Acta Physica Sinica, 1955, 11(6): 453-468. doi: 10.7498/aps.11.453
Metrics
  • Abstract views:  4356
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2021
  • Accepted Date:  13 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回