Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on temperature and electric field dependence of conductivity in polyimide

Wang Song Wu Zhan-Cheng Tang Xiao-Jin Sun Yong-Wei Yi Zhong

Citation:

Study on temperature and electric field dependence of conductivity in polyimide

Wang Song, Wu Zhan-Cheng, Tang Xiao-Jin, Sun Yong-Wei, Yi Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The deep dielectric charging (DDC) imposes a potential threat on spacecrafts. On the one hand, this kind of polymer insulator dielectric, represented by polyimide, is significantly dependent on temperature; on the other hand, during the charging process the high electric field (at the level of 107 V/m) will enhance the conductivity of the dielectric. Therefore, in order to make a precise assessment of DDC by computer simulation, the conductivity model should take into account the temperature and electric field dependences. In this field, two conductivity models are usually adopted for DDC simulation. One of them is proposed by Adamec. It puts emphasis on the enhanced conductivity due to high electric field, while its temperature dependence is based on the famous Arrhenius formula. Adamec model can make good performance versus electric field, but it is inappropriate in low temperatures. Another model combines the thermally assistant hopping conductivity and the variable-range hopping conductivity together, so it shows advantage in the temperature dependence, which is named as TAH VRH model. Although this model also can include the influence from electric fields, the effectiveness is not so good as that of Adamec model. In order to combine the advantages of these two models, i.e. the Adamec model and TAH VRH model, a new conductivity model is proposed with fewer parameters than those in TAH VRH. It is derived by replacing the Arrhenius formula in Adamec model with a simplified temperature model referred to as TAH VRH model. This formulation enables the new model to deal with a wider temperature range and keep the good performance versus high electric fields. The proposed model is verified partly by the measured data of a kind of polyimide. Satisfactory agreement is obtained in data fitting by using the new model, where the temperature dependence is better than that of Adamec model. In addition, to overcome the unreasonable increase in conductivity in low temperature and high electric field, a useful technique is proposed. By temperature mapping in the electric field correlated factors namely the carrier concentration and mobility enhancement factor, this technique can extend the feasible temperature range to a lower limit. This is done according to the assumption that the carrier concentration is small at low temperatures, and consequently the electric field influence should not be large. At high temperatures or in low electric fields, the temperature mapping is of little effect. Finally, analysis of the model's sensitivity versus several parameters is provided, demonstrating the advantage of applicability of the new model with fewer parameters.
      Corresponding author: Wang Song, 735314535@qq.com
    • Funds: Project supported by the National Natural Science Fundation of China (Grant No. 51577190).
    [1]

    Li G C. Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401]

    [2]

    Wrenn G L, Wrenn 1995 Journal of Spacecraft and Rockets 32 514

    [3]

    Han J W, Huang J G, Liu Z, Wang S 2005 Journal of Spacecraft and Rockets 42 1061

    [4]

    Guo X, Guo C W, Chen Y, Su Z P 2014 Chinese physics B 23 076403

    [5]

    Dennison J R, Brunson J 2008 IEEE Transactions on Plasma Science 36 2246

    [6]

    Frederickson A R, Dennison J R 2003 IEEE Transactions on Nuclear Science 50 2284

    [7]

    Frederickson A R, Benson C E, Bockman J F 2003 Nuclear Instruments and Methods Physics Research B 208 454

    [8]

    Rodgers D J, Ryden K A, Latham P M 1998 Engineering tools for internal charging: final report, ESA contract 12115/96/NL/JG(SC), 1998

    [9]

    Rodgers D J, Ryden K A, Wrerm G L 2003 Materials in a Space Environment 540 609

    [10]

    Sorensen J, Rodgers D J 2000 IEEE Transactions on nuclear science 47 491

    [11]

    Jun I, Garrett H B, Kim W 2008 IEEE Transactions on Plasma Science 36 2467

    [12]

    Yi Z, Wang S, Tang X J, Wu Z C 2015 Acta Phys. Sin. 64 125201 (in Chinese) [易忠, 王松, 唐小金, 武占成 2015 物理学报 64 125201]

    [13]

    Wang S, Yi Z, Tang X J, Wu Z C 2015 High Voltage engineering 41 687 (in Chinese) [王松, 易忠, 唐小金, 武占成 2015 高电压技术 41 687]

    [14]

    Tang X J, Yi Z, Meng L F, Liu Y N, Zhang C, Huang J G, Wang Z H 2013 IEEE Transactions on Plasma Science 41 3448

    [15]

    Yi Z, Meng L F, Tang X J, Yuan X X 2007 10th spacecraft charging technology conference

    [16]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401]

    [17]

    Wintle H J 1983 Conduction processes in polymers, Engineering Dielectrics Volume IIA Electrical Properties of Solid Insulating Materials: Molecular Structure and Behaviour, pp239-354, R. Bartnikas and R. M. Eichorn, (eds)., ASTM Special Technical Publication 783, ASTM, 1983

    [18]

    Mott N F, Davis E A 1979 Electronic Processes in Non-Crystalline Materials, 2 nd ed (Oxford Univ. Press, Oxford, U. K.)

    [19]

    Mott N F 1969 Phil. Mag. 19 835

    [20]

    Amos A T, Crispin R J 1975 J. Chem. Phys. 63 1890

    [21]

    Apsley N, Hughes P H 1975 Philos. Mag. 31 1327

    [22]

    Apsley N, Hughes P H 1974 Philos. Mag. 30 963

    [23]

    Dennison J R, Sim A, Brunson J, Gillespie J, Hart S, Dekany J, Sim C, Arnfield a D. January 2009 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-562, Orlando, Florida,

    [24]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551

    [25]

    Minow J I 2007 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.

  • [1]

    Li G C. Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401]

    [2]

    Wrenn G L, Wrenn 1995 Journal of Spacecraft and Rockets 32 514

    [3]

    Han J W, Huang J G, Liu Z, Wang S 2005 Journal of Spacecraft and Rockets 42 1061

    [4]

    Guo X, Guo C W, Chen Y, Su Z P 2014 Chinese physics B 23 076403

    [5]

    Dennison J R, Brunson J 2008 IEEE Transactions on Plasma Science 36 2246

    [6]

    Frederickson A R, Dennison J R 2003 IEEE Transactions on Nuclear Science 50 2284

    [7]

    Frederickson A R, Benson C E, Bockman J F 2003 Nuclear Instruments and Methods Physics Research B 208 454

    [8]

    Rodgers D J, Ryden K A, Latham P M 1998 Engineering tools for internal charging: final report, ESA contract 12115/96/NL/JG(SC), 1998

    [9]

    Rodgers D J, Ryden K A, Wrerm G L 2003 Materials in a Space Environment 540 609

    [10]

    Sorensen J, Rodgers D J 2000 IEEE Transactions on nuclear science 47 491

    [11]

    Jun I, Garrett H B, Kim W 2008 IEEE Transactions on Plasma Science 36 2467

    [12]

    Yi Z, Wang S, Tang X J, Wu Z C 2015 Acta Phys. Sin. 64 125201 (in Chinese) [易忠, 王松, 唐小金, 武占成 2015 物理学报 64 125201]

    [13]

    Wang S, Yi Z, Tang X J, Wu Z C 2015 High Voltage engineering 41 687 (in Chinese) [王松, 易忠, 唐小金, 武占成 2015 高电压技术 41 687]

    [14]

    Tang X J, Yi Z, Meng L F, Liu Y N, Zhang C, Huang J G, Wang Z H 2013 IEEE Transactions on Plasma Science 41 3448

    [15]

    Yi Z, Meng L F, Tang X J, Yuan X X 2007 10th spacecraft charging technology conference

    [16]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401]

    [17]

    Wintle H J 1983 Conduction processes in polymers, Engineering Dielectrics Volume IIA Electrical Properties of Solid Insulating Materials: Molecular Structure and Behaviour, pp239-354, R. Bartnikas and R. M. Eichorn, (eds)., ASTM Special Technical Publication 783, ASTM, 1983

    [18]

    Mott N F, Davis E A 1979 Electronic Processes in Non-Crystalline Materials, 2 nd ed (Oxford Univ. Press, Oxford, U. K.)

    [19]

    Mott N F 1969 Phil. Mag. 19 835

    [20]

    Amos A T, Crispin R J 1975 J. Chem. Phys. 63 1890

    [21]

    Apsley N, Hughes P H 1975 Philos. Mag. 31 1327

    [22]

    Apsley N, Hughes P H 1974 Philos. Mag. 30 963

    [23]

    Dennison J R, Sim A, Brunson J, Gillespie J, Hart S, Dekany J, Sim C, Arnfield a D. January 2009 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-562, Orlando, Florida,

    [24]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551

    [25]

    Minow J I 2007 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.

  • [1] Zhuo Jun-Tian, Lin Ming-Hao, Zhang Qi-Yan, Huang Shuang-Wu. Design, fabrication, and high-temperature dielectric energy storage performance of thermoplastic polyimide/aluminum oxide sandwich-structured flexible dielectric films. Acta Physica Sinica, 2024, 73(17): 177701. doi: 10.7498/aps.73.20240838
    [2] Zha Jun-Wei, Wang Fan. Research progress of high thermal conductivity polyimide dielectric films. Acta Physica Sinica, 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [3] Liu Jing, Zhang Hai-Bo. Charging characteristics and micromechanism of space electrons irradiated polymers. Acta Physica Sinica, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [4] Yuan Qing-Yun, Wang Song. A new charging model for exposed dielectric of spacecraft. Acta Physica Sinica, 2018, 67(19): 195201. doi: 10.7498/aps.67.20180532
    [5] Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo. Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites. Acta Physica Sinica, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [6] Hou Kun, Zhang Zhan-Wen, Huang Yong, Wei Jian-Jun. Characterization and properties of polyimide films prepared in different monomer ratios by vapor deposited polymerization. Acta Physica Sinica, 2016, 65(3): 035203. doi: 10.7498/aps.65.035203
    [7] Lin Jia-Qi, Li Xiao-Kang, Yang Wen-Long, Sun Hong-Guo, Xie Zhi-Bin, Xiu Han-jiang, Lei Qing-Quan. Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites. Acta Physica Sinica, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [8] Weng Ming, Hu Tian-Cun, Cao Meng, Xu Wei-Jun. Effects of electron incident angle on the secondary electron yield for polyimide. Acta Physica Sinica, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [9] Liu Jing, Zhang Hai-Bo. Steadystate charging characteristics of polymer irradiated by multi-energetic electrons. Acta Physica Sinica, 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [10] Li Guo-Chang, Min Dao-Min, Li Sheng-Tao, Zheng Xiao-Quan, Ru Jia-Sheng. Research of deep dielectric charging characteristics of polytetrafluoroethene irradiated by energetic electrons. Acta Physica Sinica, 2014, 63(20): 209401. doi: 10.7498/aps.63.209401
    [11] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [12] Li Sheng-Tao, Li Guo-Chang, Min Dao-Min, Zhao Ni. Influence of radiation electron energy on deep dielectric charging characteristics of low density polyethylene. Acta Physica Sinica, 2013, 62(5): 059401. doi: 10.7498/aps.62.059401
    [13] Fan Yong, Bu Wen-Bin, Liu Xiao-Xu, Cheng Wei-Dong, Wu Zhong-Hua, Yin Jing-Hua. Research on interface and fractal characteristics of PI/Al2O3Films by SAXS. Acta Physica Sinica, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [14] Quan Rong-Hui, Zhang Zhen-Long, Han Jian-Wei, Huang Jian-Guo, Yan Xiao-Juan. Phenomenon of deep charging in polymer under electron beam irradiation. Acta Physica Sinica, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [15] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [16] Wei Bing, Ge De-Biao. Reconstruction of transverse permittivity and conductivity for a lossy anisotropic plate. Acta Physica Sinica, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [17] Huang Jian-Guo, Chen Dong. A study of deep dielectric charging on satellites for different grounding patterns. Acta Physica Sinica, 2004, 53(5): 1611-1616. doi: 10.7498/aps.53.1611
    [18] Li Xue-Chun, Wang You-Nian. Effects of charging at dielectric surfaces on the characteristics of the sheath for plasma immersion ion implantation. Acta Physica Sinica, 2004, 53(8): 2666-2669. doi: 10.7498/aps.53.2666
    [19] Huang Jian-Guo, Chen Dong. A study of characteristics for deep dielectric charging on satellites. Acta Physica Sinica, 2004, 53(3): 961-966. doi: 10.7498/aps.53.961
    [20] BAO KE-DA. EFFECTIVE-MEDIUM THEORY FOR ELECTRICAL CONDUC-TANCE OF A TWO-PHASE COMPOSITE MEDIUM WITH ELLIPSOIDAL-INCLUSIONS. Acta Physica Sinica, 1992, 41(5): 833-840. doi: 10.7498/aps.41.833
Metrics
  • Abstract views:  8753
  • PDF Downloads:  296
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2015
  • Accepted Date:  23 September 2015
  • Published Online:  20 January 2016

/

返回文章
返回