-
In the era of highly thin, multi-functional and integrated electronic devices, it will inevitably lead to the heat accumulation inside the composite material, thereby seriously affecting the operation stability and service life of the equipment. How to realize the rapid and efficient heat conduction and heat dissipation of dielectric materials has become a bottleneck problem restricting the further development of electronic devices. The intrinsic thermal conductivity of traditional polyimide is low, which limits its application in electrical equipment, smart grid and other fields. The development of new high thermal conductivity polyimide dielectric film materials has become the focus of research. This paper introduces the thermal conduction mechanism of composite materials, summarizes the research progress and development status of thermally conductive polyimide films in recent years, and focuses on the effects of thermally conductive fillers, interface compatibility, and molding process of the thermal conductivity of materials. Finally, some key scientific and technical issues in the research are summarized and prospected in combination with the future development needs of thermally conductive polyimide composite dielectric materials.
-
Keywords:
- polyimide /
- thermal conductivity /
- thermal conductive filler /
- composite materials
[1] Song N, Cao D, Luo X, Wang Q, Ding P, Shi L 2020 Compos. Part A 135 105912Google Scholar
[2] 刘裕芮, 许艳菲 2022 物理学报 71 023601Google Scholar
Liu Y R, Xu Y F 2022 Acta Phys. Sin. 71 023601Google Scholar
[3] Lian R, Lei X, Chen Y, Zhang Q 2019 J. Appl. Polym. Sci. 136 47771Google Scholar
[4] Govindaraj B, Sarojadevi M 2018 Polym. Adv. Technol. 29 1718Google Scholar
[5] 刘金刚, 张秀敏, 田付强, 杨士勇 2017 电工技术学报 32 14Google Scholar
Liu J G, Zhang X M, Tian F Q, Yang S Y 2017 Trans. CES. 32 14Google Scholar
[6] Gu J W, Lü Z Y, Wu Y L, Guo Y Q, Tian L D, Qiu H, Li W Z, Zhang Q Y 2017 Compos. Part A 94 209Google Scholar
[7] Yang N 2016 M. S. Thesis (Tianjin: Hebei University of Technology) (in Chinese)
[8] 潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar
Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar
[9] 高梦岩, 王畅鸥, 贾妍, 翟磊, 莫松, 何民辉, 范琳 2021 绝缘材料 54 1
Gao M Y, Wang C O, Jia Y, Zhai L, Mo S, He M H, Fan L 2021 Insul. Mater. 54 1
[10] Zhao L H, Wang L, Jin Y F, Ren J W, Wang Z, Jia L C 2022 Compos. Part B 229 109454Google Scholar
[11] Zhang L, Deng H, Fu Q 2018 Compos. Commun. 8 74Google Scholar
[12] Wang C B 2020 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)
[13] WangY Y 2021 Ph. D. Dissertation (Anhui: University of Science and Technology of China) (in Chinese)
[14] 田付强, 熊雯雯, 夏宇, 杨春 2020 绝缘材料 53 1Google Scholar
Tian F Q, Xiong W W, Xia Y, Yang C 2020 Insul. Mater. 53 1Google Scholar
[15] 曲可新 2022 硕士学位论文 (哈尔滨: 哈尔滨理工大学)
Qu K X 2022 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)
[16] Liu J, Yang R G 2012 Phys. Rev. B 86 104307Google Scholar
[17] 周文英, 王蕴, 曹国政, 曹丹, 李婷, 张祥林 2021 复合材料学报 38 2038Google Scholar
Zhou W Y, Wang Y, Cao G Z, Cao D, Li T, Zhang X L 2021 Acta Mate. Compos. Sin. 38 2038Google Scholar
[18] Guo Y Q, Ruan K P, Shi X T, Yang X T, Gu J W 2020 Compos. Sci. Technol. 193 108134Google Scholar
[19] 何亭融, 曲绍宁, 尹训茜 2022 绝缘材料 53 12Google Scholar
He T R, Qu S N, Yin X X 2022 Insul. Mater. 53 12Google Scholar
[20] Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B 2016 Prog. Polym. Sci. 59 41Google Scholar
[21] Xu X X 2018 M. S. Thesis (Chongqing: Chongqing University of Posts and Telecommunications) (in Chinese)
[22] 蒋涛, 邬涵, 张群朝, 郝同辉 2019 湖北大学学报(自然科学版) 41 526Google Scholar
Jiang T, Wu H, Zhang Q C, Hao T H 2019 Hubei Univ. (Nat. Sci. Ed. ) 41 526Google Scholar
[23] 兰生, 李焜, 高新昀 2017 物理学报 66 136801Google Scholar
Lan S, Li K, Gao X Y 2017 Acta Phys. Sin. 66 136801Google Scholar
[24] 徐京城, 戴思畅, 李昊亮, 杨俊和 2018 新型炭材料 33 213Google Scholar
Xu J C, Dai S C, Li H L, Yang J H 2018 New Carb. Mater. 33 213Google Scholar
[25] Wang X S, Zhao T, Wang Y H, Zhang L, Zou L, Zhang Y T 2022 Comput. Mater. Sci. 210 111051Google Scholar
[26] Zhu M X, Song H G, Yu Q C, Chen J M, Zhang H Y 2020 Int. J. Heat. Mass. Tran. 162 120381Google Scholar
[27] Guo Y Q, Wang S S, Ruan K P, Zhang H T, Gu J W 2021 Npj Flex. Elec. 5 16Google Scholar
[28] Ding D L, Zou M H, Wang X, Qin G Z, Zhang S Y, Chan S Y, Meng Q Y, Liu Z G, Zhang Q Y, Chen Y H 2022 Chem. Eng. J. 437 135438Google Scholar
[29] Wu S, Kondo Y, Kakimoto M, et al. 2019 NPJ Comput. Mater. 5 66Google Scholar
[30] 张萌萌, 贾广跃, 熊丽萍, 何忠义, 晏金灿, 纪红兵 2020 精细化工 37 1081Google Scholar
Zhang M M, Jia G Y, Xiong L P, He Z Y, Yan J C, Ji H B 2020 Fine Chem. 37 1081Google Scholar
[31] Zhu C Y, Yang W X, Xu H B, Ding B, Gong L, Li Z Y 2021 Int. J. Therm. Sci. 168 107088Google Scholar
[32] Dong M J, Hou G Y, Zhang J C, Liu Li, Liang G Y, Hao X M, Guo Y F, Wang M H 2022 Compos. Part B 242 110033Google Scholar
[33] Zhang E R, Yao Y P, Gao T Y, Kang D D, Wu J H, Dai J Y 2019 J. Chem. Phys. 151 064116Google Scholar
[34] Yang Y, Cao J, Wei N, Meng D H, Wang L N, Ren G H, Yan R X, Zhang N 2019 Molecules 24 1103Google Scholar
[35] Ghaderi H, Ghasemi H, Rouhi S, Mahdavi E 2021 Phys. E Low Dimens. Syst. Nanostruct. 134 114830Google Scholar
[36] Ding Z W, Pei Q X, Jiang J W, Zhang Y W 2015 J. Phys. Chem. C 119 16358Google Scholar
[37] Ahmadi M, Rouhi S, Ansari R 2021 J Mater. Design Appl. 235 2762Google Scholar
[38] Sun Y Y, Zhou L Y, Han Yu, Cui Liu, Chen L 2020 Int. J. Heat. Mass. Tran. 120 120517Google Scholar
[39] Dong K, Zhang J J, Jin L M, Gu B H, Sun B Z 2016 Compos. Struct. 143 9Google Scholar
[40] Qian L J, Pang X M, Zhou J Q, Yang J X, Lin S S, Hui D 2017 Compos. Part B 116 291Google Scholar
[41] Goodarzi B V, Bahramian A R 2022 J. Therm. Anal. Calorim. 147 6227Google Scholar
[42] Wu Y J, Fang L, Xu Y B 2019 NPJ Comput. Mater. 5 1Google Scholar
[43] Meshalkin Y, Shakirov A, Popov E, Koroteev D, Gurbatova I 2020 Geophys. J. Int. 222 978Google Scholar
[44] Sargam Y, Wang K J, Cho I H 2021 Build. Eng. 34 101956Google Scholar
[45] Li K Q, Liu Y, Kang Q 2022 Int. Commun. Heat Mass Transfer 136 106139Google Scholar
[46] Jiang Y L, Shi X J, Feng Y Z, Li S, Zhou X P, Xie X L 2018 Compos. Part A 107 657Google Scholar
[47] Li S S, Liu X, Fang C Q, Liu N L, Liu D H 2018 RSC Adv. 8 20505Google Scholar
[48] Goto T, Ito T, Mayumi K, Maeda R, Shimizu Y, Hatakeyama K, Kohzolto, Hakuta Y, Terashima 2020 Compos. Sci. Technol. 190 108009Google Scholar
[49] Lule Z, Kim J 2019 Polymer 11 148Google Scholar
[50] Hu D C, Liu H Q, Guo Y K, Yang M Z, Ma W S 2022 Compos. Part A 158 106970Google Scholar
[51] Shi Q, Zhu A P 2020 Prog. Org. Coat. 140 105480Google Scholar
[52] Ding D L, Wang H T, Wu Z Q, Chen Y H, Zhang Q Y 2019 Macromol. Rapid Commun. 40 1800805Google Scholar
[53] 卢虹, 师雯, 周聪, 张梓楠, 游峰, 刘仿军 2021 胶体与聚合物 39 163Google Scholar
Lu H, Shi W, Zhou C, Zhang Z N, You F, Liu F J 2021 Coll. Poly. 39 163Google Scholar
[54] Zhang X D, Dong J W, Pan D, Yang G, Su F M, Ji Y X, Liu C T, Shen C Y 2021 Adv. Compos. Hybrid. Ma. 4 1102Google Scholar
[55] Zhou X N, Xu S S, Wang Z Y, Hao L C, Shi Z Q, Zhao J P, Zhang Q G, Ishizaki K, Wang Bo, Yang J F 2022 Adv. Sci. 9 2103592Google Scholar
[56] Lin Y, Kang Q, Wei H, Bao H, Jiang P K, Mai Y W, Huang X Y 2021 Nanomicro. Lett. 13 1Google Scholar
[57] Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y Y, Liang Z Q, Zhou J, Xu X F, Li B W 2018 Nat. Sci. Rev. 5 500Google Scholar
[58] Morikawa J, Hashimoto T 2009 J. Appl. Phys. 105 113506Google Scholar
[59] Xiao T C, Fan X, Fan D S, Li Q 2017 Polym. Bull. 74 4561Google Scholar
[60] Lei H Y, Zhang M Y, Niu H Q, Qi S L, Tian G F, Wu D Z 2018 Polymer 149 96Google Scholar
[61] Guo Z, Lee D, Liu Y, Sun F Y, Sliwinski A, Gao H F, Burns P, Luo T F 2014 Phys. Chem. Chem. Phys. 16 7764Google Scholar
[62] Ma H, Tian Z T 2019 J. Mater. Res. 34 126Google Scholar
[63] Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nat. Nanotechnol. 5 251Google Scholar
[64] Ruan K P, Guo, Y Q, Gu J W 2021 Macromolecules 54 4934Google Scholar
[65] Shoji Y, Ishige R, Higashihara T, Morikawa J, Hashimoto T, Takahara A, Watanabet J, Ueda M 2013 Macromolecules 46 747Google Scholar
[66] Shoji Y, Ishige R, Higashihara T, Kawauchi S, Watanabe J, Ueda M 2010 Macromolecules 43 8950Google Scholar
[67] Schab-Balcerzak E, Iwan A, Grucela-Zajac M, Krompiec M, Podgorna M, Domanski, M, Siwy M Janeczek H 2011 Synth. Met. 161 1660Google Scholar
[68] 龚莹, 周文英, 徐丽, 彭建东, 赵伟, 闫智伟 2017 中国塑料 31 1Google Scholar
Gong Y, Zhou W Y, Xu L, Peng J D, Zhao W, Yan Z W 2017 China Plastics 31 1Google Scholar
[69] Rivera Nicholls A, Pellisier M, Perez Y, Stock J A, Kull K, Julien T, Eubank J, Harmon J P 2019 Polym. Eng. Sci. 59 1948Google Scholar
[70] Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar
[71] Gu J W, Yang X T, Lü Z Y, Li N, Liang C B, Zhang Q Y 2016 Int. J. Heat Mass. Transf. 92 15Google Scholar
[72] Hussain A R J, Alahyari A A, Eastman S A, Thibaud-Erkey C, Johnston S, Sobkowicz M J 2017 Appl. Therm. Eng. 113 1118Google Scholar
[73] Gong J R, Liu Z D, Yu J H, Dai D, Dai W, Du S Y, Li C Y, Jiang N, Zhan Z L, Lin C T 2016 Compos. Part A 87 290Google Scholar
[74] Wu X, Li H L, Cheng K, Qiu H X, Yang J H 2019 Nanoscale 11 8219Google Scholar
[75] Ma L, Wang Y X, Wang Y Y, Wang C G, Gao X P 2020 Ceram. Int. 46 3332Google Scholar
[76] Weng M M, Jian L F, Feng X, Luo X L, Hu J Q, Zhang J S, Liu Y D, Min Y G 2021 Ceram. Int. 47 24519Google Scholar
[77] Wang Y, Wang H T, Liu F, Wu X L, Xu J L, Cui H X, Wu Y J, Xue R, Tian C, Zheng B J, Yao W 2020 Compos. Part A 138 106075Google Scholar
[78] Guo Y Q, Ruan K P, Yang X T, Ma T B, Kong J, Wu N N, Zhang J X, Gu J W, Guo Z H 2019 J. Mater. Chem. C 7 7035Google Scholar
[79] Si Y C, Samulski E T 2008 Chem. Mater. 20 6792Google Scholar
[80] Guo Y Q, Yang X T, Ruan K P, Kong J, Dong M Y, Zhang J X, Gu J W, Guo Z H 2019 ACS Appl. Mater. Interfaces 11 25465Google Scholar
[81] An L L, Yang Z H, Zeng X L, Hu W B, Yu Y L, Zhang J Y, Wang Q H 2022 Chem. Eng. J. 431 133740Google Scholar
[82] Gu J W, Du J J, Dang J, Geng W C, Hu S H, Zhang Q Y 2014 RSC Adv. 4 22101Google Scholar
[83] Liu L Z, Cao C H, Ma X Y, Zhang X R, Lü T 2020 J. Macromol. Sci. A 57 398Google Scholar
[84] Huang C L, Qian X, Yang R G 2018 Mat. Sci. Eng. R 132 1Google Scholar
[85] He X H, Wang Y C 2020 Ind. Eng. Chem. Res. 59 1925Google Scholar
[86] Wang Y Y, Zhang X, Ding X, Li Y, Zhang P, Shu M T, Zhang Q, Gong Y, Zheng K, Wu B, Tian X Y 2021 Compos. Sci. Technol. 205 108693Google Scholar
[87] Ji C 2020 M. S. Thesis (Shenzhen: Shenzhen University) (in Chinese)
[88] Leung S N, Khan M O, Chan E, Naguib H E, Dawson F, Adinkrah V, LakatosH L 2013 J Appl. Polym. Sci. 127 3293Google Scholar
[89] Liu D X, Ma C G, Chi H T, Li S H, Zhang P, Dai P B 2020 RSC Adv. 10 42584Google Scholar
[90] Che J J, Wu K, Lin Y J, Wang K, Fu Q 2017 Compos. Part A 99 32Google Scholar
[91] Wu K, Xue Y, Yang W X, Chai S G, Chen F, Fu Q 2016 Compos. Sci. Technol. 130 28Google Scholar
[92] Wei Y, Shi Y P, Jiang Z Y, Zhang X F, Chen H H, Zhang Y H, Zhang J W, Gong C H 2019 J. Alloys Compd. 810 151950Google Scholar
[93] Chen C, Li X J, Wen Y F, Liu J W, Li X W, Zeng H X, Xue Z G, Zhou X P, Xie X L 2019 Compos. Part A 125 105517Google Scholar
[94] 马馨雨 2019 硕士学位论文 (哈尔滨: 哈尔滨理工大学)
Ma X Y 2019 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)
[95] Wang H, Xing W K, Chen S, Song C Y, Dickey M D, Deng T 2021 Adv. Mater. 33 2103104Google Scholar
[96] Feng C P, Wei F, Sun K Y, Wang Y, Lan H B, Shang H J, Ding F Z, Bai L, Yang J, Yang W 2022 Nanomicro Lett. 14 127Google Scholar
[97] Yang N, Xu C, Hou J, Yao Y M, Zhang Q X, Grami M E, He L Q, Wang N Y, Qu X W 2016 RSC Adv. 6 18279Google Scholar
[98] 杨曦, 姚亚超, 张伯涵, 苏创, 于晓燕 2016 胶体与聚合物 34 19Google Scholar
Yang X, Yao Y C, Zhang B H, Su C, Yu X Y 2016 Coll. Poly. 34 19Google Scholar
[99] Xie Z L, Wu K, Liu D Y, Zhang Q, Fu Q 2021 Compo. Sci. Technol. 208 108756Google Scholar
[100] Li H Y, Li R Y, Liu H L, Wang D M, Zhang P Y, Liu T, Yang A W 2019 Emerg. Mater. Res. 8 55Google Scholar
[101] Cao L, Wang J J, Dong J, Zhao X, Li H B, Zhang Q H 2020 Compos. Part B 188 107882Google Scholar
[102] Xu L B, Chen G F, Wang W, Li L, Fang X Z 2016 Compos. Part A 84 472Google Scholar
[103] Ding D L, Shang Z H, Zhang X, Lei X F, Liu Z G, Zhang Q Y, Chen Y H 2020 Ceram. Int. 46 28363Google Scholar
[104] 王雨婷, 吴子剑, 王正芳, 王雪霏, 郭宁, 张笑瑞, 马英一, 陈昊, 翁凌 2021 绝缘材料 54 120Google Scholar
Wang Y T, Wu Z J, Wang Z F, Wang X F, Guo N, Zhang X R, Ma Y Y, Chen H, Weng L 2021 Insul. Mater. 54 120Google Scholar
[105] Duan G Y, Cao Y T, Quan J Y, Hu Z M, Wang Y, Yu J R, Zhu J 2020 J. Mater. Sci. 55 8170Google Scholar
[106] Dong J, Cao L, Li Y, Wu Z Q, Teng C Q 2020 Compos. Sci. Technol. 196 108242Google Scholar
[107] 曹金梅, 田付强, 雷清泉 2022 科学通报 67 640
Cao J M, Tian F Q, Lei Q Q 2022 Sci. Bull. 67 640
[108] Jiang T, Carbone E J, Lo K W H, Laurencin C T 2015 Prog. Polym. Sci. 46 1Google Scholar
[109] Li Z, Yin Q F, Hu W W, Zhang J W, Guo J H, Chen J P, Sun T H, Du C Q, Shu J, Yu L G, Zhang J W 2019 J. Mater. Sci. 54 9025Google Scholar
[110] Guo Y Q, Xu G J, Yang X T, Ruan K P, Ma T B, Zhang Q Y, Gu J W, Wu Y L, Liu Hu, Guo Z H 2018 J. Mater. Chem. C 6 3004Google Scholar
[111] Guo Y Q, Qiu H, Ruan K P, Zhang Y L, Gu J W 2022 Nanomicro Lett. 14 26Google Scholar
[112] Wei S Y, Yu Q X, Fan Z G, Liu S W, Chi Z G, Chen X D, Zhang Y, Xu J R 2018 RSC Adv. 8 22169Google Scholar
[113] Liu D X, Chi H T, Ma C G, Song M Y, Zhang P, Dai P B 2022 Compos. Sci. Technol. 220 109292Google Scholar
[114] Chung S H, Kim J T, Kim H, Kim D H, Jeong S W 2022 Mater. Today Commun. 30 103026Google Scholar
-
表 1 常见聚合物的热导率
Table 1. Thermal conductivity of the common polymers.
材料名称 热导率/(W·m–1·K–1) 环氧树脂 (EP) 0.20—0.88 聚氨酯 (PU) 0.25 聚偏氯乙烯 (PVDF) 0.19 聚二甲基硅氧烷 (PDMS) 0.19 聚苯乙烯 (PS) 0.18 低密度聚乙烯 (LDPE) 0.32—0.40 高密度聚乙烯 (HDPE) 0.38—0.51 聚丙烯 (PP) 0.17—0.22 聚醚醚酮 (PEEK) 0.25 聚氯乙烯 (PVC) 0.14—0.17 聚酰亚胺 (PI) 0.10—0.35 聚乙烯醇 (PVA) 0.20 聚四氟乙烯(PTFE) 0.25 聚甲醛 (POM) 0.40 -
[1] Song N, Cao D, Luo X, Wang Q, Ding P, Shi L 2020 Compos. Part A 135 105912Google Scholar
[2] 刘裕芮, 许艳菲 2022 物理学报 71 023601Google Scholar
Liu Y R, Xu Y F 2022 Acta Phys. Sin. 71 023601Google Scholar
[3] Lian R, Lei X, Chen Y, Zhang Q 2019 J. Appl. Polym. Sci. 136 47771Google Scholar
[4] Govindaraj B, Sarojadevi M 2018 Polym. Adv. Technol. 29 1718Google Scholar
[5] 刘金刚, 张秀敏, 田付强, 杨士勇 2017 电工技术学报 32 14Google Scholar
Liu J G, Zhang X M, Tian F Q, Yang S Y 2017 Trans. CES. 32 14Google Scholar
[6] Gu J W, Lü Z Y, Wu Y L, Guo Y Q, Tian L D, Qiu H, Li W Z, Zhang Q Y 2017 Compos. Part A 94 209Google Scholar
[7] Yang N 2016 M. S. Thesis (Tianjin: Hebei University of Technology) (in Chinese)
[8] 潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar
Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar
[9] 高梦岩, 王畅鸥, 贾妍, 翟磊, 莫松, 何民辉, 范琳 2021 绝缘材料 54 1
Gao M Y, Wang C O, Jia Y, Zhai L, Mo S, He M H, Fan L 2021 Insul. Mater. 54 1
[10] Zhao L H, Wang L, Jin Y F, Ren J W, Wang Z, Jia L C 2022 Compos. Part B 229 109454Google Scholar
[11] Zhang L, Deng H, Fu Q 2018 Compos. Commun. 8 74Google Scholar
[12] Wang C B 2020 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)
[13] WangY Y 2021 Ph. D. Dissertation (Anhui: University of Science and Technology of China) (in Chinese)
[14] 田付强, 熊雯雯, 夏宇, 杨春 2020 绝缘材料 53 1Google Scholar
Tian F Q, Xiong W W, Xia Y, Yang C 2020 Insul. Mater. 53 1Google Scholar
[15] 曲可新 2022 硕士学位论文 (哈尔滨: 哈尔滨理工大学)
Qu K X 2022 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)
[16] Liu J, Yang R G 2012 Phys. Rev. B 86 104307Google Scholar
[17] 周文英, 王蕴, 曹国政, 曹丹, 李婷, 张祥林 2021 复合材料学报 38 2038Google Scholar
Zhou W Y, Wang Y, Cao G Z, Cao D, Li T, Zhang X L 2021 Acta Mate. Compos. Sin. 38 2038Google Scholar
[18] Guo Y Q, Ruan K P, Shi X T, Yang X T, Gu J W 2020 Compos. Sci. Technol. 193 108134Google Scholar
[19] 何亭融, 曲绍宁, 尹训茜 2022 绝缘材料 53 12Google Scholar
He T R, Qu S N, Yin X X 2022 Insul. Mater. 53 12Google Scholar
[20] Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B 2016 Prog. Polym. Sci. 59 41Google Scholar
[21] Xu X X 2018 M. S. Thesis (Chongqing: Chongqing University of Posts and Telecommunications) (in Chinese)
[22] 蒋涛, 邬涵, 张群朝, 郝同辉 2019 湖北大学学报(自然科学版) 41 526Google Scholar
Jiang T, Wu H, Zhang Q C, Hao T H 2019 Hubei Univ. (Nat. Sci. Ed. ) 41 526Google Scholar
[23] 兰生, 李焜, 高新昀 2017 物理学报 66 136801Google Scholar
Lan S, Li K, Gao X Y 2017 Acta Phys. Sin. 66 136801Google Scholar
[24] 徐京城, 戴思畅, 李昊亮, 杨俊和 2018 新型炭材料 33 213Google Scholar
Xu J C, Dai S C, Li H L, Yang J H 2018 New Carb. Mater. 33 213Google Scholar
[25] Wang X S, Zhao T, Wang Y H, Zhang L, Zou L, Zhang Y T 2022 Comput. Mater. Sci. 210 111051Google Scholar
[26] Zhu M X, Song H G, Yu Q C, Chen J M, Zhang H Y 2020 Int. J. Heat. Mass. Tran. 162 120381Google Scholar
[27] Guo Y Q, Wang S S, Ruan K P, Zhang H T, Gu J W 2021 Npj Flex. Elec. 5 16Google Scholar
[28] Ding D L, Zou M H, Wang X, Qin G Z, Zhang S Y, Chan S Y, Meng Q Y, Liu Z G, Zhang Q Y, Chen Y H 2022 Chem. Eng. J. 437 135438Google Scholar
[29] Wu S, Kondo Y, Kakimoto M, et al. 2019 NPJ Comput. Mater. 5 66Google Scholar
[30] 张萌萌, 贾广跃, 熊丽萍, 何忠义, 晏金灿, 纪红兵 2020 精细化工 37 1081Google Scholar
Zhang M M, Jia G Y, Xiong L P, He Z Y, Yan J C, Ji H B 2020 Fine Chem. 37 1081Google Scholar
[31] Zhu C Y, Yang W X, Xu H B, Ding B, Gong L, Li Z Y 2021 Int. J. Therm. Sci. 168 107088Google Scholar
[32] Dong M J, Hou G Y, Zhang J C, Liu Li, Liang G Y, Hao X M, Guo Y F, Wang M H 2022 Compos. Part B 242 110033Google Scholar
[33] Zhang E R, Yao Y P, Gao T Y, Kang D D, Wu J H, Dai J Y 2019 J. Chem. Phys. 151 064116Google Scholar
[34] Yang Y, Cao J, Wei N, Meng D H, Wang L N, Ren G H, Yan R X, Zhang N 2019 Molecules 24 1103Google Scholar
[35] Ghaderi H, Ghasemi H, Rouhi S, Mahdavi E 2021 Phys. E Low Dimens. Syst. Nanostruct. 134 114830Google Scholar
[36] Ding Z W, Pei Q X, Jiang J W, Zhang Y W 2015 J. Phys. Chem. C 119 16358Google Scholar
[37] Ahmadi M, Rouhi S, Ansari R 2021 J Mater. Design Appl. 235 2762Google Scholar
[38] Sun Y Y, Zhou L Y, Han Yu, Cui Liu, Chen L 2020 Int. J. Heat. Mass. Tran. 120 120517Google Scholar
[39] Dong K, Zhang J J, Jin L M, Gu B H, Sun B Z 2016 Compos. Struct. 143 9Google Scholar
[40] Qian L J, Pang X M, Zhou J Q, Yang J X, Lin S S, Hui D 2017 Compos. Part B 116 291Google Scholar
[41] Goodarzi B V, Bahramian A R 2022 J. Therm. Anal. Calorim. 147 6227Google Scholar
[42] Wu Y J, Fang L, Xu Y B 2019 NPJ Comput. Mater. 5 1Google Scholar
[43] Meshalkin Y, Shakirov A, Popov E, Koroteev D, Gurbatova I 2020 Geophys. J. Int. 222 978Google Scholar
[44] Sargam Y, Wang K J, Cho I H 2021 Build. Eng. 34 101956Google Scholar
[45] Li K Q, Liu Y, Kang Q 2022 Int. Commun. Heat Mass Transfer 136 106139Google Scholar
[46] Jiang Y L, Shi X J, Feng Y Z, Li S, Zhou X P, Xie X L 2018 Compos. Part A 107 657Google Scholar
[47] Li S S, Liu X, Fang C Q, Liu N L, Liu D H 2018 RSC Adv. 8 20505Google Scholar
[48] Goto T, Ito T, Mayumi K, Maeda R, Shimizu Y, Hatakeyama K, Kohzolto, Hakuta Y, Terashima 2020 Compos. Sci. Technol. 190 108009Google Scholar
[49] Lule Z, Kim J 2019 Polymer 11 148Google Scholar
[50] Hu D C, Liu H Q, Guo Y K, Yang M Z, Ma W S 2022 Compos. Part A 158 106970Google Scholar
[51] Shi Q, Zhu A P 2020 Prog. Org. Coat. 140 105480Google Scholar
[52] Ding D L, Wang H T, Wu Z Q, Chen Y H, Zhang Q Y 2019 Macromol. Rapid Commun. 40 1800805Google Scholar
[53] 卢虹, 师雯, 周聪, 张梓楠, 游峰, 刘仿军 2021 胶体与聚合物 39 163Google Scholar
Lu H, Shi W, Zhou C, Zhang Z N, You F, Liu F J 2021 Coll. Poly. 39 163Google Scholar
[54] Zhang X D, Dong J W, Pan D, Yang G, Su F M, Ji Y X, Liu C T, Shen C Y 2021 Adv. Compos. Hybrid. Ma. 4 1102Google Scholar
[55] Zhou X N, Xu S S, Wang Z Y, Hao L C, Shi Z Q, Zhao J P, Zhang Q G, Ishizaki K, Wang Bo, Yang J F 2022 Adv. Sci. 9 2103592Google Scholar
[56] Lin Y, Kang Q, Wei H, Bao H, Jiang P K, Mai Y W, Huang X Y 2021 Nanomicro. Lett. 13 1Google Scholar
[57] Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y Y, Liang Z Q, Zhou J, Xu X F, Li B W 2018 Nat. Sci. Rev. 5 500Google Scholar
[58] Morikawa J, Hashimoto T 2009 J. Appl. Phys. 105 113506Google Scholar
[59] Xiao T C, Fan X, Fan D S, Li Q 2017 Polym. Bull. 74 4561Google Scholar
[60] Lei H Y, Zhang M Y, Niu H Q, Qi S L, Tian G F, Wu D Z 2018 Polymer 149 96Google Scholar
[61] Guo Z, Lee D, Liu Y, Sun F Y, Sliwinski A, Gao H F, Burns P, Luo T F 2014 Phys. Chem. Chem. Phys. 16 7764Google Scholar
[62] Ma H, Tian Z T 2019 J. Mater. Res. 34 126Google Scholar
[63] Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nat. Nanotechnol. 5 251Google Scholar
[64] Ruan K P, Guo, Y Q, Gu J W 2021 Macromolecules 54 4934Google Scholar
[65] Shoji Y, Ishige R, Higashihara T, Morikawa J, Hashimoto T, Takahara A, Watanabet J, Ueda M 2013 Macromolecules 46 747Google Scholar
[66] Shoji Y, Ishige R, Higashihara T, Kawauchi S, Watanabe J, Ueda M 2010 Macromolecules 43 8950Google Scholar
[67] Schab-Balcerzak E, Iwan A, Grucela-Zajac M, Krompiec M, Podgorna M, Domanski, M, Siwy M Janeczek H 2011 Synth. Met. 161 1660Google Scholar
[68] 龚莹, 周文英, 徐丽, 彭建东, 赵伟, 闫智伟 2017 中国塑料 31 1Google Scholar
Gong Y, Zhou W Y, Xu L, Peng J D, Zhao W, Yan Z W 2017 China Plastics 31 1Google Scholar
[69] Rivera Nicholls A, Pellisier M, Perez Y, Stock J A, Kull K, Julien T, Eubank J, Harmon J P 2019 Polym. Eng. Sci. 59 1948Google Scholar
[70] Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar
[71] Gu J W, Yang X T, Lü Z Y, Li N, Liang C B, Zhang Q Y 2016 Int. J. Heat Mass. Transf. 92 15Google Scholar
[72] Hussain A R J, Alahyari A A, Eastman S A, Thibaud-Erkey C, Johnston S, Sobkowicz M J 2017 Appl. Therm. Eng. 113 1118Google Scholar
[73] Gong J R, Liu Z D, Yu J H, Dai D, Dai W, Du S Y, Li C Y, Jiang N, Zhan Z L, Lin C T 2016 Compos. Part A 87 290Google Scholar
[74] Wu X, Li H L, Cheng K, Qiu H X, Yang J H 2019 Nanoscale 11 8219Google Scholar
[75] Ma L, Wang Y X, Wang Y Y, Wang C G, Gao X P 2020 Ceram. Int. 46 3332Google Scholar
[76] Weng M M, Jian L F, Feng X, Luo X L, Hu J Q, Zhang J S, Liu Y D, Min Y G 2021 Ceram. Int. 47 24519Google Scholar
[77] Wang Y, Wang H T, Liu F, Wu X L, Xu J L, Cui H X, Wu Y J, Xue R, Tian C, Zheng B J, Yao W 2020 Compos. Part A 138 106075Google Scholar
[78] Guo Y Q, Ruan K P, Yang X T, Ma T B, Kong J, Wu N N, Zhang J X, Gu J W, Guo Z H 2019 J. Mater. Chem. C 7 7035Google Scholar
[79] Si Y C, Samulski E T 2008 Chem. Mater. 20 6792Google Scholar
[80] Guo Y Q, Yang X T, Ruan K P, Kong J, Dong M Y, Zhang J X, Gu J W, Guo Z H 2019 ACS Appl. Mater. Interfaces 11 25465Google Scholar
[81] An L L, Yang Z H, Zeng X L, Hu W B, Yu Y L, Zhang J Y, Wang Q H 2022 Chem. Eng. J. 431 133740Google Scholar
[82] Gu J W, Du J J, Dang J, Geng W C, Hu S H, Zhang Q Y 2014 RSC Adv. 4 22101Google Scholar
[83] Liu L Z, Cao C H, Ma X Y, Zhang X R, Lü T 2020 J. Macromol. Sci. A 57 398Google Scholar
[84] Huang C L, Qian X, Yang R G 2018 Mat. Sci. Eng. R 132 1Google Scholar
[85] He X H, Wang Y C 2020 Ind. Eng. Chem. Res. 59 1925Google Scholar
[86] Wang Y Y, Zhang X, Ding X, Li Y, Zhang P, Shu M T, Zhang Q, Gong Y, Zheng K, Wu B, Tian X Y 2021 Compos. Sci. Technol. 205 108693Google Scholar
[87] Ji C 2020 M. S. Thesis (Shenzhen: Shenzhen University) (in Chinese)
[88] Leung S N, Khan M O, Chan E, Naguib H E, Dawson F, Adinkrah V, LakatosH L 2013 J Appl. Polym. Sci. 127 3293Google Scholar
[89] Liu D X, Ma C G, Chi H T, Li S H, Zhang P, Dai P B 2020 RSC Adv. 10 42584Google Scholar
[90] Che J J, Wu K, Lin Y J, Wang K, Fu Q 2017 Compos. Part A 99 32Google Scholar
[91] Wu K, Xue Y, Yang W X, Chai S G, Chen F, Fu Q 2016 Compos. Sci. Technol. 130 28Google Scholar
[92] Wei Y, Shi Y P, Jiang Z Y, Zhang X F, Chen H H, Zhang Y H, Zhang J W, Gong C H 2019 J. Alloys Compd. 810 151950Google Scholar
[93] Chen C, Li X J, Wen Y F, Liu J W, Li X W, Zeng H X, Xue Z G, Zhou X P, Xie X L 2019 Compos. Part A 125 105517Google Scholar
[94] 马馨雨 2019 硕士学位论文 (哈尔滨: 哈尔滨理工大学)
Ma X Y 2019 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)
[95] Wang H, Xing W K, Chen S, Song C Y, Dickey M D, Deng T 2021 Adv. Mater. 33 2103104Google Scholar
[96] Feng C P, Wei F, Sun K Y, Wang Y, Lan H B, Shang H J, Ding F Z, Bai L, Yang J, Yang W 2022 Nanomicro Lett. 14 127Google Scholar
[97] Yang N, Xu C, Hou J, Yao Y M, Zhang Q X, Grami M E, He L Q, Wang N Y, Qu X W 2016 RSC Adv. 6 18279Google Scholar
[98] 杨曦, 姚亚超, 张伯涵, 苏创, 于晓燕 2016 胶体与聚合物 34 19Google Scholar
Yang X, Yao Y C, Zhang B H, Su C, Yu X Y 2016 Coll. Poly. 34 19Google Scholar
[99] Xie Z L, Wu K, Liu D Y, Zhang Q, Fu Q 2021 Compo. Sci. Technol. 208 108756Google Scholar
[100] Li H Y, Li R Y, Liu H L, Wang D M, Zhang P Y, Liu T, Yang A W 2019 Emerg. Mater. Res. 8 55Google Scholar
[101] Cao L, Wang J J, Dong J, Zhao X, Li H B, Zhang Q H 2020 Compos. Part B 188 107882Google Scholar
[102] Xu L B, Chen G F, Wang W, Li L, Fang X Z 2016 Compos. Part A 84 472Google Scholar
[103] Ding D L, Shang Z H, Zhang X, Lei X F, Liu Z G, Zhang Q Y, Chen Y H 2020 Ceram. Int. 46 28363Google Scholar
[104] 王雨婷, 吴子剑, 王正芳, 王雪霏, 郭宁, 张笑瑞, 马英一, 陈昊, 翁凌 2021 绝缘材料 54 120Google Scholar
Wang Y T, Wu Z J, Wang Z F, Wang X F, Guo N, Zhang X R, Ma Y Y, Chen H, Weng L 2021 Insul. Mater. 54 120Google Scholar
[105] Duan G Y, Cao Y T, Quan J Y, Hu Z M, Wang Y, Yu J R, Zhu J 2020 J. Mater. Sci. 55 8170Google Scholar
[106] Dong J, Cao L, Li Y, Wu Z Q, Teng C Q 2020 Compos. Sci. Technol. 196 108242Google Scholar
[107] 曹金梅, 田付强, 雷清泉 2022 科学通报 67 640
Cao J M, Tian F Q, Lei Q Q 2022 Sci. Bull. 67 640
[108] Jiang T, Carbone E J, Lo K W H, Laurencin C T 2015 Prog. Polym. Sci. 46 1Google Scholar
[109] Li Z, Yin Q F, Hu W W, Zhang J W, Guo J H, Chen J P, Sun T H, Du C Q, Shu J, Yu L G, Zhang J W 2019 J. Mater. Sci. 54 9025Google Scholar
[110] Guo Y Q, Xu G J, Yang X T, Ruan K P, Ma T B, Zhang Q Y, Gu J W, Wu Y L, Liu Hu, Guo Z H 2018 J. Mater. Chem. C 6 3004Google Scholar
[111] Guo Y Q, Qiu H, Ruan K P, Zhang Y L, Gu J W 2022 Nanomicro Lett. 14 26Google Scholar
[112] Wei S Y, Yu Q X, Fan Z G, Liu S W, Chi Z G, Chen X D, Zhang Y, Xu J R 2018 RSC Adv. 8 22169Google Scholar
[113] Liu D X, Chi H T, Ma C G, Song M Y, Zhang P, Dai P B 2022 Compos. Sci. Technol. 220 109292Google Scholar
[114] Chung S H, Kim J T, Kim H, Kim D H, Jeong S W 2022 Mater. Today Commun. 30 103026Google Scholar
Catalog
Metrics
- Abstract views: 7737
- PDF Downloads: 316
- Cited By: 0