-
Microwave plasma thruster (MPT) is a kind of electrothermal thruster. Inside its cylindrical cavity, the plasma process, microwave electric field distribution, and TM011 mode resonant state are important factors affecting the performance of MPT seriously. According to previous MPT formed through continuous regulation in the resonant sate of cylindrical cavity, the research is needed on a newly fixed and simple MPT, which will simplify the resonant state regulation and lays an important foundation for further study. Therefore the plasma process is analyzed to find the optimal gas discharge condition, and the microwave electric field intensity and power density distribution inside the cavity running in TM011 resonant sate are calculated to analyse how the parameters are influenced by the cavity dimensions. The resonant state is finely regulated to study how it is influenced by the dimensions of cylindrical cavity and microwave coupling probe with ball and half ball structure. The results of theoretical analysis and calculation show that the discharge power of helium gas is the lowest under the condition of 489 Pa and when the ratio of length to diameter is greater than 1, the microwave electric density distribution inside the cavity is beneficial. Owing to the appropriate length and radius of microwave coupling ball probe, the experiment on resonant state regulation shows that the shortest cylinder cavity is in the optimal resonant sate, with a resonance frequency very close to 2.45 GHz. The helium discharge experiment proves that the cavity and matching ball probe enable high microwave utilization and easy helium gas discharge, and the structure scheme is correct and reliable.
[1] 毛根旺, 何洪庆, 杨涓, 史韶莉 2012 推进技术 19 21
Mao G W, He H Q, Yang J, Shi S L 2012 J. Propul. Technol. 19 21
[2] 杭观荣, 李诗凝, 康小录, 金逸舟, 孙雯熙 2023 推进技术 44 38
Google Scholar
Hang G R, Li S N, Kang X L, Jin Y Z, Sun W X 2023 J. Propul. Technol. 44 38
Google Scholar
[3] Herlin M A, Brown S C 1948 Phys. Rev. B 74 1650
Google Scholar
[4] Brown S C, MacDonald A D 1949 Phys. Rev. B 76 1629
Google Scholar
[5] Whitehair S, Asmussen J, Nakanishi S 1987 J. Propuls. Power 3 136
Google Scholar
[6] Sullivan D, Micci M 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 p3127
[7] Yildiz M S, Celik M 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, July 27–29, 2015 p3926
[8] Mehmet S Y, Murat C 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, FL, July 27–29, 2015
[9] Ivanov S, Kolev S, Kiss’ovski Z 2021 Contrib. Plasm. Phys. 61 e202100017
Google Scholar
[10] Tsubasa O, Suk H, Hideaki O 2023 AIAA SciTech Forum and Exposition, National Harbor, MD, Februray 10, 2003
[11] 韩先伟, 毛根旺, 何洪庆 2002 固体火箭技术 25 21
Han X W, Mao G W, He H Q 2002 Sol. Roc. Technol. 25 21
[12] 韩先伟, 何洪庆, 唐金兰, 毛根旺 2002 上海航天 19 1
Google Scholar
Han X W, He H Q, Tang J L, Mao G W 2002 Aerospace Shanghai 19 1
Google Scholar
[13] 唐金兰, 何洪庆, 毛根旺, 万伟 2002 固体火箭技术 25 31
Tang J L, He H Q, Mao G W, Wan W 2002 Solis Rocket Tech. 25 31
[14] Yang J, He H Q, Mao G W, Han X W 2004 J. Spacecraft Rockets 41 126
Google Scholar
[15] 杨涓, 毛根旺, 何洪庆, 唐金兰, 宋军, 苏纬仪 2004 物理学报 53 4282
Google Scholar
Yang J, Mao G W, He H Q, Tang J L, Song J, Su W Y 2004 Acta Phys. Sin. 53 4282
Google Scholar
[16] 杨涓, 苏纬仪, 毛根旺, 夏广庆 2006 物理学报 55 6494
Google Scholar
Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494
Google Scholar
[17] Yang J, Xu Y Q, Tang J L, Mao G W, Yang T L 2008 Rev. Sci. Instrum. 79 083503
Google Scholar
[18] Yang J, Xu Y Q, Meng Z Q, Yang T L 2008 Phys. Plasmas 15 023503
Google Scholar
[19] 唐金兰, 何洪庆, 韩先伟, 毛根旺, 杨涓, 万伟 2002 推进技术 23 303
Google Scholar
Tang J L, He H Q, Han X W, Mao G W, Yang J, Wan W 2002 J. Propul. Technol. 23 303
Google Scholar
[20] 孙安邦, 毛根旺, 夏广庆, 陈茂林, 邢鹏涛 2012 推进技术 33 138
Google Scholar
Sun A B, Mao G W, Xia G Q, Chen M L, Xing P T 2012 J. Propul. Technol. 33 138
Google Scholar
[21] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702
Google Scholar
Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702
Google Scholar
[22] 高海燕, 杨欣达, 周波, 贺青, 韦联福 2022 物理学报 71 064202
Google Scholar
Gao H Y, Yang X D, Zhou B, He Q, Wei L F 2022 Acta Phys. Sin. 71 064202
Google Scholar
[23] 罗思J R 著 (吴坚强 等 译) 1998 工业等离子体工程·第Ⅰ卷·基本原理 (北京: 科学出版社)
Roth J R (translated by Wu J Q) 1998 Industrial Plasma Engineering·Volume I·Basic Principles (Beijing: Science Press
-
图 12 LP/LF =146 mm/72.25 mm条件下探针结构及尺度对∆Freq和Lm的影响 (a)长4.5 mm、半径4.0—8.0 mm半球形探针; (b)半径3.5 mm、长3.0—6.0 mm球形探针和半径4.0 mm、长6.0—7.5 mm半球形探针
Figure 12. Influence of structure and dimension of probe on ∆Freq and Lm as LP/LF = 146 mm/72.25 mm: (a) 4.5 mm length and 4.0–8.0 mm radius of half ball; (b) 3.5 mm radius and 3.0–6.0 mm length of ball, 4.0 mm radius and 6.0–7.5 mm length of half ball.
-
[1] 毛根旺, 何洪庆, 杨涓, 史韶莉 2012 推进技术 19 21
Mao G W, He H Q, Yang J, Shi S L 2012 J. Propul. Technol. 19 21
[2] 杭观荣, 李诗凝, 康小录, 金逸舟, 孙雯熙 2023 推进技术 44 38
Google Scholar
Hang G R, Li S N, Kang X L, Jin Y Z, Sun W X 2023 J. Propul. Technol. 44 38
Google Scholar
[3] Herlin M A, Brown S C 1948 Phys. Rev. B 74 1650
Google Scholar
[4] Brown S C, MacDonald A D 1949 Phys. Rev. B 76 1629
Google Scholar
[5] Whitehair S, Asmussen J, Nakanishi S 1987 J. Propuls. Power 3 136
Google Scholar
[6] Sullivan D, Micci M 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 p3127
[7] Yildiz M S, Celik M 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, July 27–29, 2015 p3926
[8] Mehmet S Y, Murat C 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, FL, July 27–29, 2015
[9] Ivanov S, Kolev S, Kiss’ovski Z 2021 Contrib. Plasm. Phys. 61 e202100017
Google Scholar
[10] Tsubasa O, Suk H, Hideaki O 2023 AIAA SciTech Forum and Exposition, National Harbor, MD, Februray 10, 2003
[11] 韩先伟, 毛根旺, 何洪庆 2002 固体火箭技术 25 21
Han X W, Mao G W, He H Q 2002 Sol. Roc. Technol. 25 21
[12] 韩先伟, 何洪庆, 唐金兰, 毛根旺 2002 上海航天 19 1
Google Scholar
Han X W, He H Q, Tang J L, Mao G W 2002 Aerospace Shanghai 19 1
Google Scholar
[13] 唐金兰, 何洪庆, 毛根旺, 万伟 2002 固体火箭技术 25 31
Tang J L, He H Q, Mao G W, Wan W 2002 Solis Rocket Tech. 25 31
[14] Yang J, He H Q, Mao G W, Han X W 2004 J. Spacecraft Rockets 41 126
Google Scholar
[15] 杨涓, 毛根旺, 何洪庆, 唐金兰, 宋军, 苏纬仪 2004 物理学报 53 4282
Google Scholar
Yang J, Mao G W, He H Q, Tang J L, Song J, Su W Y 2004 Acta Phys. Sin. 53 4282
Google Scholar
[16] 杨涓, 苏纬仪, 毛根旺, 夏广庆 2006 物理学报 55 6494
Google Scholar
Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494
Google Scholar
[17] Yang J, Xu Y Q, Tang J L, Mao G W, Yang T L 2008 Rev. Sci. Instrum. 79 083503
Google Scholar
[18] Yang J, Xu Y Q, Meng Z Q, Yang T L 2008 Phys. Plasmas 15 023503
Google Scholar
[19] 唐金兰, 何洪庆, 韩先伟, 毛根旺, 杨涓, 万伟 2002 推进技术 23 303
Google Scholar
Tang J L, He H Q, Han X W, Mao G W, Yang J, Wan W 2002 J. Propul. Technol. 23 303
Google Scholar
[20] 孙安邦, 毛根旺, 夏广庆, 陈茂林, 邢鹏涛 2012 推进技术 33 138
Google Scholar
Sun A B, Mao G W, Xia G Q, Chen M L, Xing P T 2012 J. Propul. Technol. 33 138
Google Scholar
[21] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702
Google Scholar
Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702
Google Scholar
[22] 高海燕, 杨欣达, 周波, 贺青, 韦联福 2022 物理学报 71 064202
Google Scholar
Gao H Y, Yang X D, Zhou B, He Q, Wei L F 2022 Acta Phys. Sin. 71 064202
Google Scholar
[23] 罗思J R 著 (吴坚强 等 译) 1998 工业等离子体工程·第Ⅰ卷·基本原理 (北京: 科学出版社)
Roth J R (translated by Wu J Q) 1998 Industrial Plasma Engineering·Volume I·Basic Principles (Beijing: Science Press
Catalog
Metrics
- Abstract views: 880
- PDF Downloads: 30
- Cited By: 0