搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体鞘套宽带微波反射诊断方法

杨敏 王佳明 齐凯旋 李小平 谢楷 张琼杰 刘浩岩 董鹏

引用本文:
Citation:

等离子体鞘套宽带微波反射诊断方法

杨敏, 王佳明, 齐凯旋, 李小平, 谢楷, 张琼杰, 刘浩岩, 董鹏

Method of diagnosing broadband microwave reflection of plasma sheath

Yang Min, Wang Jia-Ming, Qi Kai-Xuan, Li Xiao-Ping, Xie Kai, Zhang Qiong-Jie, Liu Hao-Yan, Dong Peng
PDF
HTML
导出引用
  • 飞行器再入过程中会产生一层包裹在其表面的等离子体鞘套, 导致通信质量恶化,甚至中断, 形成“黑障”现象. 多年来“黑障”问题一直困扰着航空航天行业, 其中一个非常重要的原因是, 对等离子体鞘套测量上的局限导致对通信传输环境认知不足. 所以, 实现鞘套参数的在线原位测量是高超声速飞行器“黑障”问题研究中的关键. 本文设计了一种用于再入等离子体鞘套诊断的宽带微波反射方法, 通过理论推导得到宽带微波反射数据与等离子体参数之间的关系, 进行有效诊断频点选择. 再利用所选有效频点的反射数据反推得到等离子体参数, 实现电子密度和碰撞频率的同时诊断测量. 建立仿真模型并搭建实验平台, 对该方法进行了仿真分析和地面实验验证, 验证了该方法的有效性. 该方法能够对再入飞行器或高超声速飞行器的等离子体鞘套实时诊断提供技术支撑.
    During the re-entry process of the aircraft, a layer of plasma sheath wrapping its surface will be generated, which will lead the communication quality to deteriorate and even interrupt, resulting in the phenomenon of “radio blackout”. The “radio blackout” problem has plagued the aerospace industry for many years. One of the very important reasons is the lack of awareness of the communication transmission environment caused by the limitations of plasma sheath measurements. Therefore, the realization of in-situ measurement of sheath parameters is the key to the research of the “radio blackout” problem of hypersonic vehicles.In this work, a broadband microwave reflection method is presented and developed for diagnosing the reentry plasma sheath .The relationship between broadband microwave reflection data and plasma parameters is derived theoretically, and effective diagnostic frequency points are selected. Then, the plasma parameters are obtained by inversely using the reflection data of the selected effective frequency points to realize the simultaneous diagnosis and measurement of electron density and collision frequency.This method makes up for the deficiency that the traditional reflectometer cannot diagnose high collision frequency plasma, and it can diagnose the parameter of the plasma sheath of the hypersonic vehicle in a complex environment.A simulation model and an experimental platform are established, and the simulation analysis and ground experiment are carried out to verify the method. The electron density of the plasma is diagnosed by transmission diagnostics to provide a control for reflection experiments. The experimental results show that the difference between the two diagnostic results is small, which verifies the effectiveness of the method.The method can realize the real-time diagnosis of plasma sheaths of re-entry vehicles or hypersonic vehicles under various flight conditions, and accumulate a large number of first-hand measurement data, which is of great scientific value in recognizing the characteristics of plasma sheaths comprehensively, objectively and accurately. It can also be used for the parameter input link of the adaptive measurement and control system environment. In addition, this method can also be used for real-time measurement of environment parameters of ground plasma jet and real-time monitoring of changes of plasma jet parameters without changing the jet shape.
      通信作者: 王佳明, jmwang_6@stu.xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071355)资助的课题.
      Corresponding author: Wang Jia-Ming, jmwang_6@stu.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071355).
    [1]

    Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, USA, August 20–23, 2007, AIAA 2007–6633

    [2]

    Rybak J, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7(5) 879

    [3]

    Xie K, Yang M, Bai B W, Li X P, Zhou H, Guo L X 2016 J. Appl. Phys. 119 023301Google Scholar

    [4]

    杨敏 2014 博士学位论文 (西安: 西安电子科技大学)

    Yang M 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    Akey N D, Schroeder L C 1973 J. Spacecr. Rockets 10 170Google Scholar

    [6]

    Boris D R, Fernsler R F, Walton S G 2015 Plasma Sources Sci. Technol. 24 025032Google Scholar

    [7]

    Saifutdinov A I,  Sysoev S S 2022 Instrum. Exp. Tech. 65 75Google Scholar

    [8]

    赵国利 2010博士学位论文 (大连: 大连理工大学)

    Zhao G L 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [9]

    陈宗胜, 林志丹, 时家明, 马丽芳 2015 真空科学与技术学报 35 646

    Chen Z S, Lin Z D, Shi J M, Ma F L 2015 Chinese Journal of Vacuum Science and Technology 35 646

    [10]

    Berchtikou A, Lavoie J, Poenariu V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 24Google Scholar

    [11]

    Shi J, Guo Y C, Xiao S L, Qian F, Yang Z H 2017 Nucl. Instrum. Methods Phys. Res. A866 72

    [12]

    李斌 2010 博士论文 (合肥: 中国科学技术大学)

    Li B 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [13]

    莫少奇 2016 博士论文 (成都: 电子科技大学)

    Mo S Q 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [14]

    袁忠才, 时家明 2005 核聚变与等离子体物理 25 78

    Yuan Z C, Shi J M 2005 Nuclear Fusion and Plasma Physics 25 78

    [15]

    王甲寅, 时家明, 袁忠才 2007 强激光与粒子束 2007 621

    Wang J Y, Shi J M, Yuan Z C 2007 High Power Laser and Particle Beams 2007 621

    [16]

    刘荣明, 吴慎将, 苏俊宏, 徐均琪, 王可瑄 2019 西安工业大学学报 39 521

    Liu Y M, Wu S J, Su J H, Xu J Q, Wang K X 2019 Journal of Xi’an Technological University 39 521

    [17]

    Ermak G P, Varavin A V, Vasilev A S, Fateev A V, Varavin N V, Zacek V, Zajac J, Zorenko A V 2016 Telecommun. Radio Eng. 76 903

    [18]

    Janson S 1994 25th Plasmadynamics & Lasers Conference Colorado Springs, USA, June 20–23, 1994 ppAIAA-94-2424

    [19]

    Ohler S G, Gilchrist B E, Gallimore A D 1995 IEEE Trans. Plasma Sci. 23 428Google Scholar

    [20]

    Anabitarte E, Bustamante E G, Calderón M A G, Senties J M 1987 J. Infrared MillimeterWaves 8 733

    [21]

    李建刚 2016 物理 45 88

    Li J G 2016 Physics 45 88

    [22]

    金兹堡 著 (钱善瑎 译) 1978 电磁波在等离子体中的传播 (北京: 科学出版社) 第5—9页, 第22—30页, 第85—87页

    Ginzburg (translated by Qian S X) 1978 Propagation of electromagnetic wave in plasma (Beijing: Science Press) pp5–9, pp22–30, pp85–87 (in Chinese)

    [23]

    Zhao C W, Li X P, Yang M, Sun C 2020 Microwave Opt. Technol. Lete. 63 205

  • 图 1  带有等离子体鞘套的等效传输线路的计算模型

    Fig. 1.  Calculation model of equivalent transmission lines with plasma sheath.

    图 2  不同碰撞频率下反射系数和透射系数的幅度-频率曲线

    Fig. 2.  Amplitude-frequency curve of reflection coefficients and transmission coefficients with different electron-neutral collision frequencies.

    图 3  带有等离子体鞘套的等效传输线简化模型

    Fig. 3.  Reduced model of equivalent transmission lines with plasma sheath.

    图 4  有效诊断频段选择

    Fig. 4.  Selection of effective diagnostic frequency band.

    图 5  不同碰撞频率下$a(\omega )$实部曲线

    Fig. 5.  Curve of real component of α(ω) with different electron-neutral collision frequencies.

    图 6  VVD天线CST模型

    Fig. 6.  CST model of VVD antenna.

    图 7  数据标定流程

    Fig. 7.  Data calibration process

    图 8  反解流程

    Fig. 8.  Reverse solution process

    图 9  电磁仿真模型

    Fig. 9.  Electromagnetic simulation model of plasma.

    图 10  电子密度$ {n}_{\rm{e}} $ = 3×1011cm–3 (a) 反射系数幅度; (b) 有效频点选择; (c) 反解结果

    Fig. 10.  Electron density $ {n}_{\rm{e}} $ = 3×1011cm–3: (a) Magnitude of reflection coefficient; (b) selection of effective frequency points; (c) inverse solution result.

    图 11  碰撞频率$ {v}_{\rm{e}} $ = 1 GHz (a) 反射系数幅度; (b) 有效频点选择; (c) 反解结果

    Fig. 11.  Collision frequency$ {v}_{\rm{e}} $ = 0.1 GHz: (a) Magnitude of reflection coefficient; (b) selection of effective frequency points; (c) inverse solution result.

    图 12  电阻负载式小型双层Vivaldi天线 (a) CST仿真模型; (b) 待用天线的照片; (c) 带耐热透波陶瓷材料的天线照片

    Fig. 12.  The resistance loaded miniaturized dual-Layer Vivaldi antenna: (a) CST simulation model; (b) photograph of proposed antenna; (c) photograph of proposed antenna with heat resistant wave-transparent composites.

    图 13  (a)宽带微波反射等离子体诊断实验配置俯视图; (b)微波反射等离子体诊断装置的安装图

    Fig. 13.  (a) Top view of broadband microwave reflectometry plasma diagnostic system; (b) erection diagram of broadband microwave reflectometry plasmadiagnostic system in vacuum chamber.

    图 14  不同输入功率下时-频-反射系数图 (a)状态1; (b)状态2; (c)状态3; (d)状态4; (e)状态5; (f)状态6

    Fig. 14.  Images of time, frequency and reflection coefficient amplitude with different input power: (a) Status 1; (b) Status 2; (c) Status 3; (d) Status 4; (e) Status 5; (f) Status 6.

    图 15  状态3 (a) 反射系数幅度; (b) 有效频点选择; (c) 反解结果

    Fig. 15.  Status 3: (a) Magnitude of reflection coefficient; (b) selection of effective frequency points; (c) inverse solution result.

    表 1  诊断结果

    Table 1.  Diagnostic results.

    仿真设置值诊断结果$ {n_{\text{e}}} $/cm–3诊断误差/%诊断结果$ {v_{{\text{en}}}} $/GHz诊断误差/%
    $ {n_{\text{e}}} $/cm–3$ {v_{{\text{en}}}} $/GHz
    1×10101$ < $5×1010
    1×10111.283×101128.30.931–6.9
    3×10113.181×10116.031.0505.0
    5×10115.274×10115.480.896–10.4
    7×10117.435×10116.210.930–7.0
    1×10121.026×10122.600.954–4.6
    下载: 导出CSV

    表 2  诊断结果

    Table 2.  Diagnostic results.

    仿真设置值诊断结果 $ {n_{\text{e}}} $/1011 cm–3诊断误差/%诊断结果 $ {v_{{\text{en}}}} $/GHz诊断误差/%
    $ {n_{\text{e}}} $/cm–3${v_{ {\text{en} } } }$/GHz
    3×10110.1$ 3 $.35511.80.083516.4
    1.03.1816.031.05005.0
    5.02.8873.773.606027.8
    下载: 导出CSV

    表 3  不同输入功率下(不同等离子体状态)反射计诊断结果

    Table 3.  Diagnostic results of reflectometer in different input power (different plasma states).

    状态功率/kW电压/kV电流/A反射计诊断结果/(1011 cm–3)碰撞频率/GHz透射法诊断结果/(1011 cm–3)
    状态21206.0200.70822.1981.404
    状态31547.0221.56201.3091.982
    状态41807.5242.10000.8813.442
    状态52088.0265.51500.2387.958
    状态62529.028>10.00009.358
    下载: 导出CSV
  • [1]

    Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, USA, August 20–23, 2007, AIAA 2007–6633

    [2]

    Rybak J, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7(5) 879

    [3]

    Xie K, Yang M, Bai B W, Li X P, Zhou H, Guo L X 2016 J. Appl. Phys. 119 023301Google Scholar

    [4]

    杨敏 2014 博士学位论文 (西安: 西安电子科技大学)

    Yang M 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    Akey N D, Schroeder L C 1973 J. Spacecr. Rockets 10 170Google Scholar

    [6]

    Boris D R, Fernsler R F, Walton S G 2015 Plasma Sources Sci. Technol. 24 025032Google Scholar

    [7]

    Saifutdinov A I,  Sysoev S S 2022 Instrum. Exp. Tech. 65 75Google Scholar

    [8]

    赵国利 2010博士学位论文 (大连: 大连理工大学)

    Zhao G L 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [9]

    陈宗胜, 林志丹, 时家明, 马丽芳 2015 真空科学与技术学报 35 646

    Chen Z S, Lin Z D, Shi J M, Ma F L 2015 Chinese Journal of Vacuum Science and Technology 35 646

    [10]

    Berchtikou A, Lavoie J, Poenariu V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 24Google Scholar

    [11]

    Shi J, Guo Y C, Xiao S L, Qian F, Yang Z H 2017 Nucl. Instrum. Methods Phys. Res. A866 72

    [12]

    李斌 2010 博士论文 (合肥: 中国科学技术大学)

    Li B 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [13]

    莫少奇 2016 博士论文 (成都: 电子科技大学)

    Mo S Q 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [14]

    袁忠才, 时家明 2005 核聚变与等离子体物理 25 78

    Yuan Z C, Shi J M 2005 Nuclear Fusion and Plasma Physics 25 78

    [15]

    王甲寅, 时家明, 袁忠才 2007 强激光与粒子束 2007 621

    Wang J Y, Shi J M, Yuan Z C 2007 High Power Laser and Particle Beams 2007 621

    [16]

    刘荣明, 吴慎将, 苏俊宏, 徐均琪, 王可瑄 2019 西安工业大学学报 39 521

    Liu Y M, Wu S J, Su J H, Xu J Q, Wang K X 2019 Journal of Xi’an Technological University 39 521

    [17]

    Ermak G P, Varavin A V, Vasilev A S, Fateev A V, Varavin N V, Zacek V, Zajac J, Zorenko A V 2016 Telecommun. Radio Eng. 76 903

    [18]

    Janson S 1994 25th Plasmadynamics & Lasers Conference Colorado Springs, USA, June 20–23, 1994 ppAIAA-94-2424

    [19]

    Ohler S G, Gilchrist B E, Gallimore A D 1995 IEEE Trans. Plasma Sci. 23 428Google Scholar

    [20]

    Anabitarte E, Bustamante E G, Calderón M A G, Senties J M 1987 J. Infrared MillimeterWaves 8 733

    [21]

    李建刚 2016 物理 45 88

    Li J G 2016 Physics 45 88

    [22]

    金兹堡 著 (钱善瑎 译) 1978 电磁波在等离子体中的传播 (北京: 科学出版社) 第5—9页, 第22—30页, 第85—87页

    Ginzburg (translated by Qian S X) 1978 Propagation of electromagnetic wave in plasma (Beijing: Science Press) pp5–9, pp22–30, pp85–87 (in Chinese)

    [23]

    Zhao C W, Li X P, Yang M, Sun C 2020 Microwave Opt. Technol. Lete. 63 205

  • [1] 徐子原, 周辉, 刘光翰, 高中亮, 丁丽, 雷凡. 三维行波磁场对等离子体鞘套密度的调控作用. 物理学报, 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [2] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [3] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [4] 张天成, 成爱强, 包华广, 丁大志. 静态强磁场对临近空间飞行器中天线辐射性能的影响. 物理学报, 2022, 71(8): 085202. doi: 10.7498/aps.71.20212044
    [5] 刘惠平, 邹秀. 电子和负离子的反射运动对碰撞电负性磁鞘的影响. 物理学报, 2020, 69(2): 025201. doi: 10.7498/aps.69.20191307
    [6] 吴金芳, 陈兆权, 张明, 张煌, 张三阳, 冯德仁, 周郁明. 微波瑞利散射法测定空气电火花激波等离子体射流的时变电子密度. 物理学报, 2020, 69(7): 075202. doi: 10.7498/aps.69.20191909
    [7] 吕春静, 韩一平. 湍流等离子体鞘套中高斯光束的传播特性分析. 物理学报, 2019, 68(9): 094201. doi: 10.7498/aps.68.20182169
    [8] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] 薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫. 电磁波在非均匀磁化的等离子体鞘套中传输特性研究. 物理学报, 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [10] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 碰撞参数对磁化电负性等离子体鞘层结构的影响. 物理学报, 2016, 65(24): 245201. doi: 10.7498/aps.65.245201
    [11] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏. 高气压空气环状感性耦合等离子体实验研究和参数诊断. 物理学报, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [12] 刘智惟, 包为民, 李小平, 刘东林. 一种考虑电磁波驱动效应的等离子碰撞频率分段计算方法. 物理学报, 2014, 63(23): 235201. doi: 10.7498/aps.63.235201
    [13] 丁世敬, 黄刘宏, 李跃波, 薛凡喜. 基于材料反射率谐振特性测试电磁参数的自由空间法. 物理学报, 2012, 61(22): 220601. doi: 10.7498/aps.61.220601
    [14] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [15] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化. 物理学报, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [16] 杨 涓, 许映乔, 朱良明. 局域环境中微波等离子体电子密度诊断实验研究. 物理学报, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [17] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断. 物理学报, 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [18] 张秋菊, 盛政明, 王兴海, 满宝元, 苍 宇, 张 杰. 相位反射产生的激光场空洞现象及其与激光等离子体参数相关性研究. 物理学报, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [19] 汪建华, 袁润章, 邬钦崇, 任兆杏. 用微波ECR等离子体溅射法在蓝宝石(0112)晶面上生长ZnO薄膜的研究. 物理学报, 1999, 48(5): 955-960. doi: 10.7498/aps.48.955
    [20] 黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉. 利用类铜离子谱线诊断银等离子体电子密度. 物理学报, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
计量
  • 文章访问数:  3906
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 修回日期:  2022-07-22
  • 上网日期:  2022-11-26
  • 刊出日期:  2022-12-05

/

返回文章
返回