Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of coincidence Doppler broadening of positron annihilation measurement technology in materials

Ye Feng-Jiao Zhang Peng Zhang Hong-Qiang Kuang Peng Yu Run-Sheng Wang Bao-Yi Cao Xing-Zhong

Citation:

Research progress of coincidence Doppler broadening of positron annihilation measurement technology in materials

Ye Feng-Jiao, Zhang Peng, Zhang Hong-Qiang, Kuang Peng, Yu Run-Sheng, Wang Bao-Yi, Cao Xing-Zhong
PDF
HTML
Get Citation
  • Positron annihilation technique is an atomic-scale characterization method used to analyze the defects and microstructure of materials, which is extremely sensitive to open volume defects. By examining the annihilation behaviour of positrons and electrons in open volume defects, local electron density and atomic structure information around the annihilation site can be obtained, such as the size and concentration of vacancies, and vacancy clusters. In recent years, positron annihilation spectroscopy has evolved into a superior tool for characterizing features of material compared with conventional methods. The coincident Doppler broadening technique provides unique advantages for examining the local electronic structure and chemical environment (elemental composition) information about defects due to its effectiveness describing high momentum electronic information. The low momentum portion of the quotient spectrum indicates the Doppler shift generated by the annihilation of valence electrons near the vacancy defect. Changes in the peak amplitudes and positions of the characteristic peaks in the high momentum region can reveal elemental information about the positron annihilation point. The physical mechanism of element segregation, the structural features of open volume defects and the interaction between interstitial atoms and vacancy defects are well investigated by using the coincidence Doppler broadening technology. In recent years, based on the development of Doppler broadening technology, the sensitivity of slow positron beam coincidence Doppler broadening technology with adjustable energy has been significantly enhanced at a certain depth. It is notable that slow positron beam techniques can offer surface, defect, and interface microstructural information as a function of material depth. It compensates for the fact that the traditional coincidence Doppler broadening technique can only determine the overall defect information. Positron annihilation technology has been applied to the fields of second phase evolution in irradiated materials, hydrogen/helium effect, and free volume in thin films, as a result of the continuous development of slow positron beam and the improvement of various experimental test methods based on slow positron beam. In this paper, the basic principles of the coincidence Doppler broadening technique are briefly discussed, and the application research progress of the coincidence Doppler broadening technique in various materials is reviewed by combining the reported developments: 1) the evolution behaviour of nanoscale precipitation in alloys; 2) the interaction between lattice vacancies and impurity atoms in semiconductors; 3) the changes of oxygen vacancy and metal cation concentration in oxide material. In addition, coincident Doppler broadening technology has been steadily used to estimate and quantify the sizes, quantities, and distributions of free volume holes in polymers.
      Corresponding author: Cao Xing-Zhong, caoxzh@ihep.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0210002) and the National Natural Science Foundation of China (Grant Nos. U1732265, 12175262, 11575205, 11875005, 11775235).
    [1]

    Lynn K G, MacDonald J R, Boie R A, Feldman L C, Gabbe J D, Robbins M F, Bonderup E, Golovchenko J 1977 Phys. Rev. Lett. 38 241Google Scholar

    [2]

    Lynn K G, Goland A N 1976 Solid. State. Commun. 18 1549Google Scholar

    [3]

    Zhang X, Lu G 2010 Phys. Rev. B. 82 012101Google Scholar

    [4]

    Elsayed M, Krause-Rehberg R, Christian E, Nadine E, Bernd K 2018 Phys. Status Solidi A 215 1800036Google Scholar

    [5]

    Abhaya S, Rajaraman R, Sarguna R M, Pradyumna K P, David C, Amarendra G 2019 J. Alloys Compd. 806 780Google Scholar

    [6]

    曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙 2017 物理学报 66 027801Google Scholar

    Cao X Z, Song L G, Jin S X, Zhang R G, Wang B Y, Wei L 2017 Acta Phys. Sin. 66 027801Google Scholar

    [7]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [8]

    Grafutin V I, Prokop’ev E P 2002 Phys. Usp. 45 59Google Scholar

    [9]

    郗传英 2005 博士学位论文 (合肥: 中国科学技术大学)

    Xi C Y 2005 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [10]

    Ishizaki T, Yoshiie T, Sato K, Yanagita S, Xu Q, Komatsu M, Kiritani M 2003 Mater. Sci. Eng. A 350 102Google Scholar

    [11]

    Elsayed M, Bondarenko V, Petters K, Gebauer J, Krause-Rehberg R 2008 J. Appl. Phy. 104 103526Google Scholar

    [12]

    Xia R, Cao X Z, Gao M Z, Zhang P, Zeng M F, Wang B Y, Wei L 2017 Phys. Chem. Chem. Phys. 19 3616Google Scholar

    [13]

    Karwasz G P, Zecca A, Brusa R S, Pliszkab D 2004 J. Alloys Compd. 382 244Google Scholar

    [14]

    Utpalla P, Sharma S K, Sudarshan K, Kumar V, Pujari P K 2019 Eur. Polym. J. 117 10Google Scholar

    [15]

    Suzuki T, He C Q, Kondo K, Shantarovich V, Ito Y 2003 Radiat. Phys. Chem. 68 489Google Scholar

    [16]

    Sharma S K, Prakash J, Bahadur J, Sudarshan K, Maheshwari P, Mazumderc S, Pujari P K 2014 Phys. Chem. Chem. Phys. 16 1399Google Scholar

    [17]

    Seeger A 1973 J. Phys. F: Met. Phys. 3 284Google Scholar

    [18]

    朱特, 曹兴忠 2020 物理学报 69 177801Google Scholar

    Zhu T, Cao X Z 2020 Acta Phys. Sin. 69 177801Google Scholar

    [19]

    Wang B Y, Cao X Z, Yu R S, Wei C F, Zhang Z M, Ma C X, Chang T B, Pei G X, Li J C, Zheng L S, Wei L, Wang T M, He Y J, Yu W Z, Zhu S Y 2004 Positron Annihilation, ICPA-13 Proceedings Kyoto, Japan Sep 7–12, 2003 pp513–515

    [20]

    Zhang R G, Wang B Y, Zhang H, Wei L 2005 Appl. Surf. Sci. 245 340Google Scholar

    [21]

    Wan D Y, Wang Y T, Wang B Y, Ma C X, Sun H, Wei L 2003 J. Cryst. Growth 253 230Google Scholar

    [22]

    王丹妮, 王宝义, 张兰芝, 钟玉荣, 章志明, 李道武, 魏龙, 张天保 2008 核技术 31 577Google Scholar

    Wang D N, Wang B Y, Zhang L Z, Zhong Y R, Zheng Z M, Li D W, Wei L, Zhang T B 2008 Nucl. Tech. 31 577Google Scholar

    [23]

    Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996 Phys. Rev. B 77 2097Google Scholar

    [24]

    Brusa R S, Deng W, Karwasz G P, Zecca A 2002 Nucl. Instrum. Methods Phys. Res. , Sect. B 194 519Google Scholar

    [25]

    Xi C Y, Ye B J, Kong W, Weng H M, Zhou X Y, Han R D 2006 Chin. J. Chem. Phys. 19 203Google Scholar

    [26]

    Lee S U, Lee Y J, Kim J R, Jeong K E, Jeong S Y 2019 J. Ind. Eng. Chem. 79 443Google Scholar

    [27]

    Sugita K, Ogawa R, Mizuno M, Araki Hm, Yabuuchi A 2022 Scr. Mater. 208 114339Google Scholar

    [28]

    Jin K, Guo W, Lu C Y, Ullah M W, Zhang Y W, Weber W J, Wang L M, Poplawsky J D, Bei H B 2016 Acta Mater. 121 365Google Scholar

    [29]

    Jin S X, Zhang P, Lu E Y, Guo L P, Wang B Y, Cao X Z 2016 Acta Mater. 103 658Google Scholar

    [30]

    Zhong Z H, Xu Q, Mori K, Tokitani M 2019 Philos. Mag. 99 1515Google Scholar

    [31]

    王少阶 2008 应用正电子谱学(上卷) (武汉: 湖北科学技术出版社) 第85页

    Wang S J 2008 Applied Positron Spectroscopy (Vol. 1) (Wuhan: Hubei Science and Technology Press) p85

    [32]

    Onitsuka T, Takenaka M, Kuramoto, Nagai Y, Hasegawa M 2001 Phys. Rev. B 65 012204Google Scholar

    [33]

    Bartha K, Zháňal P, Stráský J, Čížek J, Dopita M, Lukáč F, Harcuba P, Hájek M, Polyakova V, Semenova I, Janečeka M 2019 J. Alloys Compd. 788 771Google Scholar

    [34]

    Nagai Y, Hasegawa M, Tang Z, Hempel A, Yubuta K, Shimamura T, Kawazoe Y, Kawai A, Kano F 2000 Phys. Rev. B 61 6574Google Scholar

    [35]

    Liu X S, Zhang P, Wang B Y, Cao X Z, Jin S X, Yu R S 2021 Materials 14 1451Google Scholar

    [36]

    Abhaya S, Rajaraman S. Kalavathi R, Amarendra G 2015 J. Alloys Compd. 620 277Google Scholar

    [37]

    Ye F J, Zhu T, Wang Q Q, Song Y M, Zhang H Q, Kuang P, Zhang P, Yu R S, Cao X Z, Wang B Y 2022 Intermetallics 149 107670Google Scholar

    [38]

    Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110Google Scholar

    [39]

    Xu Q, Yoshiie T, Sato K 2007 Phys. Status Solidi C 4 3573Google Scholar

    [40]

    Wang X W, ZhongY R, Wang B Y, Zhang H Y 2009 J. Mater. Res. 24 1794Google Scholar

    [41]

    王茜茜 2022 硕士学位论文 (贵阳: 贵州大学)

    Wang Q Q 2022 M. S. Thesis (Guiyang: Guizhou University

    [42]

    Sabelová V, Kršjak V, Kuriplach Jm, Dai Y, Slugeň V 2015 J. Nucl. Mater. 458 350Google Scholar

    [43]

    Fujii K, Fukuya K, Nakata N, Hono K, Nagai Y, Hasegawa M 2005 J. Nucl. Mater. 340 247Google Scholar

    [44]

    Ge W N, Rahman A, Cheng H, Zhang M, Liu J D, Zhang Z M, Ye B J 2018 J. Magn. Magn. Mater. 449 401Google Scholar

    [45]

    Kundu R, Bhattacharya S, Roy D, Nambissan P M G 2017 RSC Adv. 7 8131Google Scholar

    [46]

    Qin M J, Gao F, Cizek J, Yang S J, Fan X L, Zhao L L, Xu J, Dong G G, Reece M, Yan H X 2019 Acta Mater. 164 76Google Scholar

    [47]

    Ahmed M, Mukherjee S, Singha T, Nambissan P M G 2023 J. Phys. Chem. Solids 181 111513Google Scholar

    [48]

    Thorat A V, Ghoshal T, Morris M A, Nambissan P M G 2014 Acta Phys. Pol. A 125 756Google Scholar

    [49]

    Das A, Mandal A C, Roy S, Prashanth P, Ahamed S I, Kar S, Prasad M S, Nambissan P M G 2016 Physica E 83 389Google Scholar

    [50]

    Ghosh S, Khan G K, Mandal K, Samanta A, Nambissan P M G 2013 J. Phys. Chem. C 117 8458Google Scholar

    [51]

    Das A 2019 Curr. Sci. 117 1990Google Scholar

    [52]

    Yu R S, Maekawa M, Kawasuso A, Wang B Y, Wei L 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 270 47Google Scholar

    [53]

    Elsayed M, Krause-Rehberg R, Korff B, Ratschinski I, Leipner H S 2013 Eur. Phys. J. B 86 358Google Scholar

    [54]

    Xu J, Moxom J, Somieski B, White C W 2001 Phys. Rev. B 64 112404Google Scholar

    [55]

    Slotte J, Makkonen I, Tuomisto F 2016 ECS J. Solid State Sci. Technol. 5 3166Google Scholar

    [56]

    Simpson P J, Jenei Z, Asoka-Kumar P, Robison R R, Law M E 2012 Appl. Phys. Lett. 85 1538Google Scholar

    [57]

    Das A, Mandal A C, Roy S, Nambissan P M G 2018 AIP Adv. 8 095013Google Scholar

    [58]

    Pasang T, Namratha K, Guagliardo P, Byrappa K, Ranganathaiah C, Samarin S, FWilliams J 2015 Mater. Res. Express 2 045502Google Scholar

    [59]

    Sharma S K, Bahadur J, Bahadur J, Sudarshan K, Maheshwari P, Mazumder S, Pujari P K 2014 Phys. Chem. Phys. Chem. 16 1399Google Scholar

    [60]

    Cao X Z, Xia R, Yang J, Zeng M, Wang B Y, Yu R S, Wei L 2017 Acta Phys. Pol A 132 1535Google Scholar

    [61]

    Ghasemifard M, Ghamari M 2023 J. Appl. Polym. Sci. 141 1Google Scholar

    [62]

    Rana U, Nambissan P M G, Malika S, Chakrabarti K 2014 Phys. Chem. Chem. Phys. 7 3292Google Scholar

    [63]

    Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 176Google Scholar

    [64]

    An X D, Zhu T, Wan M P, Li Y H, Wang Q Q, Zhang P, Liu J Y, Song Y M, Zhang Z K, Wang B Y, Cao X Z 2021 Int. J. Hydrogen Energy 46 13163Google Scholar

    [65]

    Wang Q Q, An X D, Zhu T, Wan M P, Zhang P, Ye F J, Song Y M, Huang C W, Ma R, Wang B Y, Cao X Z 2021 J. Alloys Compd. 885 160909Google Scholar

    [66]

    Fujinami M, Sawada T, Akahane T 2003 Radiat. Phys. Chem. 68 631Google Scholar

    [67]

    Beyerlein I J, Demkowicz M J, Misraa A, Uberuaga B P 2015 Prog. Mater. Sci. 74 125Google Scholar

    [68]

    Liu Y L, Song L G, Chen Y, Bai R Y, Wang Z, Zhu T, Zhang P, Jin S X, Wang H H, Lu E Y, Cao X Z, Wang B Y 2021 Fusion Eng. Des. 162 112118Google Scholar

    [69]

    Ren X L, Yao B D, Zhu T, Zhong Z H, Wang Y X, Cao X Z, Jinno S, Xu Q 2020 Intermetallics 126 106942Google Scholar

    [70]

    Zhang L Z, Wang D N, Wang B Y, Yu R S, Wei L 2007 Appl. Surf. Sci. 253 7309Google Scholar

    [71]

    Reiner M, Pikart P, Hugenschmidt C 2014 J. Alloys Compd. 587 515Google Scholar

    [72]

    Khanam A, Slotte J, Tuomisto F, Subhechha S, Popovici M, Kar G S 2022 J. Appl. Phys. 131 245301Google Scholar

    [73]

    杨静 2015 博士学位论文 (北京: 中国科学院高能物理研究所)

    Yang J 2015 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences

    [74]

    Wiktor J, Jomard G, Torrent M 2015 Phys. Rev. B 93 125113Google Scholar

    [75]

    Yang Q G, Cao X Z, Wang B Y, Wang P, Olsson P 2023 Phys. Rev. B 108 104113Google Scholar

    [76]

    Simula K A, Haerkönen J, Zhelezova I, Drummond N D, Tuomisto F, Makkonen I 2023 Phys. Rev. B 108 045201Google Scholar

    [77]

    Makkonen I, Hakala M, Puska M J 2006 Phys. Rev. B 73 035103Google Scholar

    [78]

    Puska M J, Seitsonen A P, Nieminen R M 1995 Phys. Rev. B 52 10947Google Scholar

    [79]

    Yang Q G, Hu Z, Makkonen L, Desgardin P, Egger W, Barthe M F, Olsson P 2022 J. Nucl. Mater. 571 154019Google Scholar

    [80]

    刘永利 2022 博士学位论文 (北京: 中国科学院高能物理研究所)

    Liu Y L 2022 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences

    [81]

    Yang Q G, Olsson P 2023 Acta Mater. 242 118429Google Scholar

    [82]

    Elsayed M, Staab T E M, Čížek J, Krause-Rehberg R 2021 Acta Mater. 219 117228Google Scholar

    [83]

    Elsayed M, Krause-Rehberg R, Korff B, Richter S, Leipner H S 2013 J. Appl. Phys. 113 094902Google Scholar

    [84]

    Rauch C, Makkonen I, Tuomisto F 2011 Phys Status Solidi A 208 1548Google Scholar

    [85]

    Makkonena I, Hakalab M, Puska M J 2006 Physica B 376-377 972Google Scholar

    [86]

    Slotte J, Tuomisto F 2012 Mater. Sci. Semicond. Process. 15 669Google Scholar

    [87]

    Linez F, Makkonen I, Tuomisto F 2016 Phys. Rev. B 94 014103Google Scholar

  • 图 1  正电子湮没中的多普勒展宽原理

    Figure 1.  Doppler broadening principle in positron annihilation.

    图 2  CDB测量系统示意图

    Figure 2.  Schematic diagram of CDB measurement system.

    图 3  不同样品的CDB谱图 (a) 纯Fe样品; (b) Fe-Cu样品; (c)对角化后的纯Fe和Fe-Cu样品. 插图为Cu特征峰(PL = 12×10–3m0c—28×10–3m0c)附近的扩展图

    Figure 3.  CDB spectra of different samples: (a) Pure Fe; (b) Fe-Cu samples; (c) pure Fe and Fe-Cu samples after diagonalization. Inset is an extended view near the Cu characteristic peak (PL = 12×10–3m0c—28×10–3m0c)

    图 4  纯Fe中的 CDB谱图与DBS图[18]

    Figure 4.  CDB spectra and DBS in pure Fe[18].

    图 5  (a) 纯Fe的CDB中S参数及W参数的定义区域; (b) Fe-Cu合金中的正电子湮没

    Figure 5.  (a) Definition area of S parameter and W parameter in CDB of pure Fe; (b) schematic diagram of positron annihilation in Fe-Cu alloy

    图 6  典型元素与Al的商谱图[23] (a)实验数据; (b)理论数据

    Figure 6.  Spectra for different elements after normalizing to Al[23]: (a) Experimental curves; (b) theoretical curves.

    图 7  各种金属元素的正电子亲合势A+ (单位: eV)[9]

    Figure 7.  Positron affinity A+ (unit: eV) of metal elements[9].

    图 8  纯 Cu, Fe-0.3%Cu 合金在不同剂量下辐照后与纯Fe的CDB谱[29]

    Figure 8.  CDB spectra with pure Fe of pure Cu, Fe-0.3%Cu alloy irradiated at different doses[29].

    图 9  纯 Cu和Fe-0.3%Cu 合金在不同剂量下辐照后与纯Cu的CDB谱[29]

    Figure 9.  CDB spectra of pure Cu and Fe-0.3%Cu alloy irradiated with pure Cu at different doses[29].

    图 10  (a) FeCrMnCuMo合金、纯Cr, Mn, Cu和Mo相对于纯Fe的CDB谱图[30]; (b) 铸态、退火态FeCrMnCuMo合金和纯Cu相对于纯Fe的CDB谱图[30]; (c)纯Fe, Cr, Mn, Cu与FeCrMnCuMo在773 K和1073 K下退火相比于铸态FeCrMnCuMo合金的CDB谱图[30]

    Figure 10.  (a) CDB ratio curves of the FeCrMnCuMo alloy, pure Cr, Mn, Cu and Mo with respect to pure Fe; (b) as-cast, annealed FeCrMnCuMo alloy and pure Cu with respect to pure Fe; (c) pure Fe, Cr, Mn, Cu and Mo and annealed FeCrMnCuMo alloy at 773 K and 1073 K with respect to the as-cast FeCrMnCuMo[30].

    图 11  Fe-1.0%Cu合金在不同温度下等时退火的CDB谱图[32]

    Figure 11.  CDB spectra of isochronous annealing of Fe-1.0%Cu alloy at different temperatures[32].

    图 12  纯铜、淬火后Fe-1.0%Cu合金和在不同时间时效后的CDB谱图[34]

    Figure 12.  CDB spectra of pure Cu, quenched Fe-1.0% Cu alloy and aged at different times[34].

    图 13  (a)纯Fe, Fe-1.0%Cu合金在不同时间时效后的CDB谱图[34]

    Figure 13.  CDB spectra of pure Fe, Fe-1.0%Cu alloy aged at different times[34].

    图 14  快中子辐照后的Fe-0.3%Cu, Fe-0.15%Cu, Fe-0.05%Cu, 纯Fe和纯Cu的CDB谱图[38]

    Figure 14.  CDB spectra of pure Fe, pure Cu, Fe-0.3%Cu, Fe-0.15%Cu, Fe-0.05%Cu after fast neutron [38].

    图 15  未充氢和充氢样品的CDB谱图[40]

    Figure 15.  CDB spectra of uncharged and hydrogen-charged samples[40].

    图 16  充氢样品和退火后纯Al的CDB谱图[40]

    Figure 16.  CDB spectra of hydrogen-charged samples and annealed pure[40].

    图 17  纯 Ti (a)和Ti-Mo合金(b)充氢前后的CDB曲线[41]

    Figure 17.  CDB curves of pure Ti (a) and Ti-Mo alloy (b) before and after hydrogen charging[41].

    图 18  不同浓度La掺杂Bi1-xLaxFeO3的CDB谱图[44]

    Figure 18.  CDB spectra of Bi1-xLaxFeO3 samples doped with different concentrations of La[44].

    图 19  SiC在不同温度下退火的CDB谱图[52]

    Figure 19.  CDB spectra of SiC annealed at different temperatures[52].

    图 20  不同浓度Ca掺杂MgO样品的CDB谱图[57]

    Figure 20.  CDB spectra of MgO samples doped with different concentrations of Ca[57].

    图 21  聚合物中正电子的湮没状态

    Figure 21.  Annihilation state of positron in polymer.

    图 22  PVA基纳米复合材料的CDB谱图[59]

    Figure 22.  CDB spectra of PVA based nanocomposites[59].

    图 23  纳米复合材料中自由正电子湮没贡献的CDB与PVA的比值曲线. 插图为纯 PVA 的动量密度分布反卷积[59]

    Figure 23.  CDB ratio curves with respect to PVA obtained for free positron annihilation contribution in the nanocomposites. The inset shows the deconvolution of the momentum density for pure PVA[59].

    图 24  纯钛样品在RT, 473和573 K的H离子辐照至0.2 dpa时的CDB谱图[64]

    Figure 24.  CDB ratio curves of the pure titanium specimen H ion irradiated to 0.2 dpa at RT, 473 and 573 K[64].

    图 25  在300, 573和773 K下辐照CrCoFeMnNi与未辐照CrCoFeMnNi的CDB谱图[69]

    Figure 25.  CDB spectra of the irradiated CrCoFeMnNi at 300, 573 and 773 K to the unirradiated CrCoFeMnNi[69].

    图 26  不同退火温度下Ti/Al界面的CDB谱图[70]

    Figure 26.  CDB spectra of Ti/Al interface at different annealing temperatures[70].

    图 27  钨中空位团簇的多普勒谱[79]

    Figure 27.  Doppler spectra of vacancy clusters in tungsten[79].

    图 28  (a) 根据多普勒谱计算的计算SW参数[79]; (b) 钨晶格、单空位和VN的实验SW参量[79]

    Figure 28.  (a) Computed S and W parameters calculated from Doppler spectra[79]; (b) experimental S and W parameters for tungsten lattice, single vacancy and VN[79].

    图 29  (a)有不同数量空位的纯钨多普勒谱曲线[80]; (b)有不同空位/He原子比值的纯钨多普勒谱曲线[80]

    Figure 29.  (a) Doppler spectra of pure tungsten with different numbers of vacancies[80]; (b) Doppler spectra of pure tungsten with different vacancy/He atom ratios[80].

    图 30  纯钨中有不同空位/He原子比值下的多普勒谱曲线[80]

    Figure 30.  Doppler curves of pure tungsten with different vacancy/He atom ratios[80].

    图 31  (a) fcc Cu和V1-Cu1-8的多普勒谱[81]; (b)两种不同晶格常数下fcc Cu, V1-Cu14-50和fcc Cu, bcc Cu晶格中单空位的多普勒谱[81]

    Figure 31.  (a) Doppler spectra of the fcc Cu and V1-Cu1-8[81]; (b) Doppler spectra of the fcc Cu, V1-Cu14-50 and single vacancy in fcc Cu and bcc Cu lattice with two different lattice constants[81].

    图 32  (a) Al-In合金在淬火后以及纯In的多普勒谱图[82]; (b) 模拟计算的单空位和双空位以及空位-In复合物的多普勒谱图[82]

    Figure 32.  (a) Doppler spectra of Al-In alloys after quenching as well as the spectrum of the pure indium reference[82]; (b) calculated ratio curves with respect to Al for mono- and di-vacancies as well as for vacancy-In complexes[82].

    图 33  (a) Al-Sn合金在淬火后以及纯Sn的多普勒谱图[82]; (b) 模拟计算的单位和双空位以及空位-Sn复合物的多普勒谱图[82]

    Figure 33.  (a) Doppler spectra of Al-In alloys after quenching as well as the spectrum of the pure indium reference[82]; (b) calculated ratio curves with respect to Al for mono- and di-vacancies as well as for vacancy-In complexes[82].

    图 34  (a) Zn-扩散GaAs(淬火态)和纯Zn样品的多普勒谱图[83]; (b) 理论上计算了GaAs中不同空位和空位配合物的动量密度[83]

    Figure 34.  (a) Results of Doppler broadening spectroscopy of Zn-diffused SI GaAs (as-quenched) and pure Zn samples[83]; (b) ratio of the momentum density to bulk GaAs for different vacancies and vacancy complexes in GaAs are theoretically calculated[83].

  • [1]

    Lynn K G, MacDonald J R, Boie R A, Feldman L C, Gabbe J D, Robbins M F, Bonderup E, Golovchenko J 1977 Phys. Rev. Lett. 38 241Google Scholar

    [2]

    Lynn K G, Goland A N 1976 Solid. State. Commun. 18 1549Google Scholar

    [3]

    Zhang X, Lu G 2010 Phys. Rev. B. 82 012101Google Scholar

    [4]

    Elsayed M, Krause-Rehberg R, Christian E, Nadine E, Bernd K 2018 Phys. Status Solidi A 215 1800036Google Scholar

    [5]

    Abhaya S, Rajaraman R, Sarguna R M, Pradyumna K P, David C, Amarendra G 2019 J. Alloys Compd. 806 780Google Scholar

    [6]

    曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙 2017 物理学报 66 027801Google Scholar

    Cao X Z, Song L G, Jin S X, Zhang R G, Wang B Y, Wei L 2017 Acta Phys. Sin. 66 027801Google Scholar

    [7]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [8]

    Grafutin V I, Prokop’ev E P 2002 Phys. Usp. 45 59Google Scholar

    [9]

    郗传英 2005 博士学位论文 (合肥: 中国科学技术大学)

    Xi C Y 2005 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [10]

    Ishizaki T, Yoshiie T, Sato K, Yanagita S, Xu Q, Komatsu M, Kiritani M 2003 Mater. Sci. Eng. A 350 102Google Scholar

    [11]

    Elsayed M, Bondarenko V, Petters K, Gebauer J, Krause-Rehberg R 2008 J. Appl. Phy. 104 103526Google Scholar

    [12]

    Xia R, Cao X Z, Gao M Z, Zhang P, Zeng M F, Wang B Y, Wei L 2017 Phys. Chem. Chem. Phys. 19 3616Google Scholar

    [13]

    Karwasz G P, Zecca A, Brusa R S, Pliszkab D 2004 J. Alloys Compd. 382 244Google Scholar

    [14]

    Utpalla P, Sharma S K, Sudarshan K, Kumar V, Pujari P K 2019 Eur. Polym. J. 117 10Google Scholar

    [15]

    Suzuki T, He C Q, Kondo K, Shantarovich V, Ito Y 2003 Radiat. Phys. Chem. 68 489Google Scholar

    [16]

    Sharma S K, Prakash J, Bahadur J, Sudarshan K, Maheshwari P, Mazumderc S, Pujari P K 2014 Phys. Chem. Chem. Phys. 16 1399Google Scholar

    [17]

    Seeger A 1973 J. Phys. F: Met. Phys. 3 284Google Scholar

    [18]

    朱特, 曹兴忠 2020 物理学报 69 177801Google Scholar

    Zhu T, Cao X Z 2020 Acta Phys. Sin. 69 177801Google Scholar

    [19]

    Wang B Y, Cao X Z, Yu R S, Wei C F, Zhang Z M, Ma C X, Chang T B, Pei G X, Li J C, Zheng L S, Wei L, Wang T M, He Y J, Yu W Z, Zhu S Y 2004 Positron Annihilation, ICPA-13 Proceedings Kyoto, Japan Sep 7–12, 2003 pp513–515

    [20]

    Zhang R G, Wang B Y, Zhang H, Wei L 2005 Appl. Surf. Sci. 245 340Google Scholar

    [21]

    Wan D Y, Wang Y T, Wang B Y, Ma C X, Sun H, Wei L 2003 J. Cryst. Growth 253 230Google Scholar

    [22]

    王丹妮, 王宝义, 张兰芝, 钟玉荣, 章志明, 李道武, 魏龙, 张天保 2008 核技术 31 577Google Scholar

    Wang D N, Wang B Y, Zhang L Z, Zhong Y R, Zheng Z M, Li D W, Wei L, Zhang T B 2008 Nucl. Tech. 31 577Google Scholar

    [23]

    Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996 Phys. Rev. B 77 2097Google Scholar

    [24]

    Brusa R S, Deng W, Karwasz G P, Zecca A 2002 Nucl. Instrum. Methods Phys. Res. , Sect. B 194 519Google Scholar

    [25]

    Xi C Y, Ye B J, Kong W, Weng H M, Zhou X Y, Han R D 2006 Chin. J. Chem. Phys. 19 203Google Scholar

    [26]

    Lee S U, Lee Y J, Kim J R, Jeong K E, Jeong S Y 2019 J. Ind. Eng. Chem. 79 443Google Scholar

    [27]

    Sugita K, Ogawa R, Mizuno M, Araki Hm, Yabuuchi A 2022 Scr. Mater. 208 114339Google Scholar

    [28]

    Jin K, Guo W, Lu C Y, Ullah M W, Zhang Y W, Weber W J, Wang L M, Poplawsky J D, Bei H B 2016 Acta Mater. 121 365Google Scholar

    [29]

    Jin S X, Zhang P, Lu E Y, Guo L P, Wang B Y, Cao X Z 2016 Acta Mater. 103 658Google Scholar

    [30]

    Zhong Z H, Xu Q, Mori K, Tokitani M 2019 Philos. Mag. 99 1515Google Scholar

    [31]

    王少阶 2008 应用正电子谱学(上卷) (武汉: 湖北科学技术出版社) 第85页

    Wang S J 2008 Applied Positron Spectroscopy (Vol. 1) (Wuhan: Hubei Science and Technology Press) p85

    [32]

    Onitsuka T, Takenaka M, Kuramoto, Nagai Y, Hasegawa M 2001 Phys. Rev. B 65 012204Google Scholar

    [33]

    Bartha K, Zháňal P, Stráský J, Čížek J, Dopita M, Lukáč F, Harcuba P, Hájek M, Polyakova V, Semenova I, Janečeka M 2019 J. Alloys Compd. 788 771Google Scholar

    [34]

    Nagai Y, Hasegawa M, Tang Z, Hempel A, Yubuta K, Shimamura T, Kawazoe Y, Kawai A, Kano F 2000 Phys. Rev. B 61 6574Google Scholar

    [35]

    Liu X S, Zhang P, Wang B Y, Cao X Z, Jin S X, Yu R S 2021 Materials 14 1451Google Scholar

    [36]

    Abhaya S, Rajaraman S. Kalavathi R, Amarendra G 2015 J. Alloys Compd. 620 277Google Scholar

    [37]

    Ye F J, Zhu T, Wang Q Q, Song Y M, Zhang H Q, Kuang P, Zhang P, Yu R S, Cao X Z, Wang B Y 2022 Intermetallics 149 107670Google Scholar

    [38]

    Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110Google Scholar

    [39]

    Xu Q, Yoshiie T, Sato K 2007 Phys. Status Solidi C 4 3573Google Scholar

    [40]

    Wang X W, ZhongY R, Wang B Y, Zhang H Y 2009 J. Mater. Res. 24 1794Google Scholar

    [41]

    王茜茜 2022 硕士学位论文 (贵阳: 贵州大学)

    Wang Q Q 2022 M. S. Thesis (Guiyang: Guizhou University

    [42]

    Sabelová V, Kršjak V, Kuriplach Jm, Dai Y, Slugeň V 2015 J. Nucl. Mater. 458 350Google Scholar

    [43]

    Fujii K, Fukuya K, Nakata N, Hono K, Nagai Y, Hasegawa M 2005 J. Nucl. Mater. 340 247Google Scholar

    [44]

    Ge W N, Rahman A, Cheng H, Zhang M, Liu J D, Zhang Z M, Ye B J 2018 J. Magn. Magn. Mater. 449 401Google Scholar

    [45]

    Kundu R, Bhattacharya S, Roy D, Nambissan P M G 2017 RSC Adv. 7 8131Google Scholar

    [46]

    Qin M J, Gao F, Cizek J, Yang S J, Fan X L, Zhao L L, Xu J, Dong G G, Reece M, Yan H X 2019 Acta Mater. 164 76Google Scholar

    [47]

    Ahmed M, Mukherjee S, Singha T, Nambissan P M G 2023 J. Phys. Chem. Solids 181 111513Google Scholar

    [48]

    Thorat A V, Ghoshal T, Morris M A, Nambissan P M G 2014 Acta Phys. Pol. A 125 756Google Scholar

    [49]

    Das A, Mandal A C, Roy S, Prashanth P, Ahamed S I, Kar S, Prasad M S, Nambissan P M G 2016 Physica E 83 389Google Scholar

    [50]

    Ghosh S, Khan G K, Mandal K, Samanta A, Nambissan P M G 2013 J. Phys. Chem. C 117 8458Google Scholar

    [51]

    Das A 2019 Curr. Sci. 117 1990Google Scholar

    [52]

    Yu R S, Maekawa M, Kawasuso A, Wang B Y, Wei L 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 270 47Google Scholar

    [53]

    Elsayed M, Krause-Rehberg R, Korff B, Ratschinski I, Leipner H S 2013 Eur. Phys. J. B 86 358Google Scholar

    [54]

    Xu J, Moxom J, Somieski B, White C W 2001 Phys. Rev. B 64 112404Google Scholar

    [55]

    Slotte J, Makkonen I, Tuomisto F 2016 ECS J. Solid State Sci. Technol. 5 3166Google Scholar

    [56]

    Simpson P J, Jenei Z, Asoka-Kumar P, Robison R R, Law M E 2012 Appl. Phys. Lett. 85 1538Google Scholar

    [57]

    Das A, Mandal A C, Roy S, Nambissan P M G 2018 AIP Adv. 8 095013Google Scholar

    [58]

    Pasang T, Namratha K, Guagliardo P, Byrappa K, Ranganathaiah C, Samarin S, FWilliams J 2015 Mater. Res. Express 2 045502Google Scholar

    [59]

    Sharma S K, Bahadur J, Bahadur J, Sudarshan K, Maheshwari P, Mazumder S, Pujari P K 2014 Phys. Chem. Phys. Chem. 16 1399Google Scholar

    [60]

    Cao X Z, Xia R, Yang J, Zeng M, Wang B Y, Yu R S, Wei L 2017 Acta Phys. Pol A 132 1535Google Scholar

    [61]

    Ghasemifard M, Ghamari M 2023 J. Appl. Polym. Sci. 141 1Google Scholar

    [62]

    Rana U, Nambissan P M G, Malika S, Chakrabarti K 2014 Phys. Chem. Chem. Phys. 7 3292Google Scholar

    [63]

    Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 176Google Scholar

    [64]

    An X D, Zhu T, Wan M P, Li Y H, Wang Q Q, Zhang P, Liu J Y, Song Y M, Zhang Z K, Wang B Y, Cao X Z 2021 Int. J. Hydrogen Energy 46 13163Google Scholar

    [65]

    Wang Q Q, An X D, Zhu T, Wan M P, Zhang P, Ye F J, Song Y M, Huang C W, Ma R, Wang B Y, Cao X Z 2021 J. Alloys Compd. 885 160909Google Scholar

    [66]

    Fujinami M, Sawada T, Akahane T 2003 Radiat. Phys. Chem. 68 631Google Scholar

    [67]

    Beyerlein I J, Demkowicz M J, Misraa A, Uberuaga B P 2015 Prog. Mater. Sci. 74 125Google Scholar

    [68]

    Liu Y L, Song L G, Chen Y, Bai R Y, Wang Z, Zhu T, Zhang P, Jin S X, Wang H H, Lu E Y, Cao X Z, Wang B Y 2021 Fusion Eng. Des. 162 112118Google Scholar

    [69]

    Ren X L, Yao B D, Zhu T, Zhong Z H, Wang Y X, Cao X Z, Jinno S, Xu Q 2020 Intermetallics 126 106942Google Scholar

    [70]

    Zhang L Z, Wang D N, Wang B Y, Yu R S, Wei L 2007 Appl. Surf. Sci. 253 7309Google Scholar

    [71]

    Reiner M, Pikart P, Hugenschmidt C 2014 J. Alloys Compd. 587 515Google Scholar

    [72]

    Khanam A, Slotte J, Tuomisto F, Subhechha S, Popovici M, Kar G S 2022 J. Appl. Phys. 131 245301Google Scholar

    [73]

    杨静 2015 博士学位论文 (北京: 中国科学院高能物理研究所)

    Yang J 2015 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences

    [74]

    Wiktor J, Jomard G, Torrent M 2015 Phys. Rev. B 93 125113Google Scholar

    [75]

    Yang Q G, Cao X Z, Wang B Y, Wang P, Olsson P 2023 Phys. Rev. B 108 104113Google Scholar

    [76]

    Simula K A, Haerkönen J, Zhelezova I, Drummond N D, Tuomisto F, Makkonen I 2023 Phys. Rev. B 108 045201Google Scholar

    [77]

    Makkonen I, Hakala M, Puska M J 2006 Phys. Rev. B 73 035103Google Scholar

    [78]

    Puska M J, Seitsonen A P, Nieminen R M 1995 Phys. Rev. B 52 10947Google Scholar

    [79]

    Yang Q G, Hu Z, Makkonen L, Desgardin P, Egger W, Barthe M F, Olsson P 2022 J. Nucl. Mater. 571 154019Google Scholar

    [80]

    刘永利 2022 博士学位论文 (北京: 中国科学院高能物理研究所)

    Liu Y L 2022 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences

    [81]

    Yang Q G, Olsson P 2023 Acta Mater. 242 118429Google Scholar

    [82]

    Elsayed M, Staab T E M, Čížek J, Krause-Rehberg R 2021 Acta Mater. 219 117228Google Scholar

    [83]

    Elsayed M, Krause-Rehberg R, Korff B, Richter S, Leipner H S 2013 J. Appl. Phys. 113 094902Google Scholar

    [84]

    Rauch C, Makkonen I, Tuomisto F 2011 Phys Status Solidi A 208 1548Google Scholar

    [85]

    Makkonena I, Hakalab M, Puska M J 2006 Physica B 376-377 972Google Scholar

    [86]

    Slotte J, Tuomisto F 2012 Mater. Sci. Semicond. Process. 15 669Google Scholar

    [87]

    Linez F, Makkonen I, Tuomisto F 2016 Phys. Rev. B 94 014103Google Scholar

  • [1] Zhu Te, Cao Xing-Zhong. Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy. Acta Physica Sinica, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [2] Hu Yuan-Chao, Cao Xing-Zhong, Li Yu-Xiao, Zhang Peng, Jin Shuo-Xue, Lu Er-Yang, Yu Run-Sheng, Wei Long, Wang Bao-Yi. Applications and progress of slow positron beam technique in the study of metal/alloy microdefects. Acta Physica Sinica, 2015, 64(24): 247804. doi: 10.7498/aps.64.247804
    [3] Zhang Li-Juan, Zhang Chuan-Chao, Liao Wei, Liu Jian-Dang, Gu Bing-Chuan, Yuan Xiao-Dong, Ye Bang-Jiao. Influence of deuteration on the KH2PO4 crystal micro-defects characterization by using positron annihilation spectroscopy. Acta Physica Sinica, 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [4] Ding Yong, Chen Ren-Jie, Guo Shuai, Liu Xing-Ming, Lee Dong, Yan A-Ru. Effect of Dy additive on microstructure and magnetic propertiesof rapidly solidified Nd-Fe-B strips. Acta Physica Sinica, 2011, 60(5): 057103. doi: 10.7498/aps.60.057103
    [5] Wang Xiao-Lian, Feng Hao, Sun Wei-Guo, Fan Qun-Chao, Wang Bin, Zeng Yang-Yang. Momentum transfer cross sections of low-energy electron scattering from H2 molecule with the polarization potential using the distributed spherical Gaussian model. Acta Physica Sinica, 2011, 60(2): 023401. doi: 10.7498/aps.60.023401
    [6] Zhang Qiang, Hiroyuki Toda. Synchrotron K-edge subtraction imaging and its application to metallic foams. Acta Physica Sinica, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [7] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [8] Wang Xue-Tao, Guan Qing-Feng, Qiu Dong-Hua, Cheng Xiu-Wei, Li Yan, Peng Dong-Jin, Gu Qian-Qian. Defect microstructures in polycrystalline pure copper induced by high-current pulsed electron beam——the vacancy defect clusters and surface micropores. Acta Physica Sinica, 2010, 59(10): 7252-7257. doi: 10.7498/aps.59.7252
    [9] Xiong Tao, Gao Chuan-Bo, Chen Xiang-Lei, Zhou Xian-Yi, Weng Hui-Min, Cao Fang-Yu, Ye Bang-Jiao, Han Rong-Dian, Du Huai-Jiang. Positron study of carbon-Fe3O4 coaxial nanofibers. Acta Physica Sinica, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [10] Du Xiao-Ming, Wu Er-Dong, Dong Bao-Zhong, Wu Zhong-Hua, Yuan Xue-Zhong. Microscopic defects in Ti-Mo alloy hydrides studied by small-angle X-ray scattering. Acta Physica Sinica, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [11] Chen Deng-Ping, He Hong-Liang, Li Ming-Fa, Jing Fu-Qian. A delayed failure of inhomogenous brittle material under shock wave compression. Acta Physica Sinica, 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [12] Guo Jian-Ting, Li Yu-Fang, Xiong Liang-Yue, Ye Heng-Qiang. The micromechanism of alloying element Zr affecting the ductility of Ni33Al alloy with different Al contents. Acta Physica Sinica, 2005, 54(4): 1868-1873. doi: 10.7498/aps.54.1868
    [13] Liu Yi-Bao, Pang Wen-Ning, Ding Hai-Bing, Shang Ren-Cheng. Distribution of electron clouds in the excited atomic state in electron-photon coincidence scattering experiment. Acta Physica Sinica, 2005, 54(8): 3554-3558. doi: 10.7498/aps.54.3554
    [14] BAN CHUN-YAN, BA QI-XIAN, CUI JIAN-ZHONG, LU GUI-MIN, ZI BING-TAO. MICROSTRUCTURES AND DISTRIBUTION OF ALLOYING ELEMENTS OF LY12 Al-ALLOY MODIFIED BY A PULSED CURRENT. Acta Physica Sinica, 2001, 50(10): 2028-2031. doi: 10.7498/aps.50.2028
    [15] ZHONG XIA-PING, DENG WEN, TANG YU-SHENG, XIONG LIANG-YUE, WANG SHU-HE, GUO JIAN-TING, LONG QI-WEI. THE MICROSCOPIC MECHANISM OF ALLOYING ELEMENTS AFFECTING THE DUCTILITY OR BRITTLENESS OF FeAl INTERMETALLICS. Acta Physica Sinica, 1998, 47(10): 1734-1740. doi: 10.7498/aps.47.1734
    [16] YANG BING-XIN, CHENG XIAN-JUN, PANG WEN-NING, CHENG MIAO-HUA, ZHANG FANG, TIAN BAO-LI, XU KE-ZUN. DEVELOPMENT STUDY OF (e,2e) ELECTRON MOMENTUM SPECTROMETER AND MEASUREMENT OF ELECTRON-MOMENTUM SPECTRUM OF SEVERAL ATOMS AND MOLECULARS. Acta Physica Sinica, 1997, 46(5): 862-869. doi: 10.7498/aps.46.862
    [17] WU YI-CHU, ZHU ZHI-YING, YOSHIKO ITOH, YASUO ITO. POSITRON LIFETIME AND DOPPLER BROADENING TECHNIQUES STUDIES ON THE INTERACTION BETWEEN HYDROGEN AND DEFECTS IN NICKEL. Acta Physica Sinica, 1997, 46(2): 406-410. doi: 10.7498/aps.46.406
    [18] GU YI-MING, REN SHANG-YUAN. D3d SYMMETRIC LOCAL SPECTRAL DENSITIES AND THE ELECTRONIC STRUCTURES OF SUBSTITUTIONAL PAIRS IN Si. Acta Physica Sinica, 1987, 36(6): 736-744. doi: 10.7498/aps.36.736
    [19] GU BING-LIN, LOU YONG-MING, GAO NAI-FEI, XIONG JIA-JIONG. ELECTRONIC STRUCTURE AND DEFECT SPECTROSCOPY OF POINT DEFECTS IN METALS. Acta Physica Sinica, 1986, 35(1): 17-24. doi: 10.7498/aps.35.17
    [20] ZENG QING-CHENG. MICROSCOPIC OBSERVATION OF DIFFUSION DISTRIBUTION OF IONIZED IMPURITIES IN SILICON. Acta Physica Sinica, 1981, 30(2): 249-253. doi: 10.7498/aps.30.249
Metrics
  • Abstract views:  772
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2023
  • Accepted Date:  11 January 2024
  • Available Online:  13 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回