Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Positron annihilation lifetime and Doppler broadening spectral calculation of oxygen-doped 3C-SiC

ZHAO Yi ZHANG Hongtao LI Qiang TANG Xian CHENG Guodong

Citation:

Positron annihilation lifetime and Doppler broadening spectral calculation of oxygen-doped 3C-SiC

ZHAO Yi, ZHANG Hongtao, LI Qiang, TANG Xian, CHENG Guodong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Based on density functional theory (DFT), the formation energies of intrinsic vacancy defects (VC, VSi, and VSi+C) and oxygen-related defects (OC, OSi, OCVSi, and OSiVC) in 3C-SiC are systematically investigated. The results indicate that all defects considered, except for OC, possess neutral or negative charge states, thereby making them suitable for detection by positron annihilation spectroscopy (PAS). Furthermore, the electron and positron density distributions and positron annihilation lifetimes for the perfect 3C-SiC supercell and various defective configurations are computed. It is found that the OSi and OSiVC complexes act as effective positron trapping centers, leading to the formation of positron trapped states and a notable increase in annihilation lifetimes at the corresponding defect sites. In addition, coincidence Doppler broadening (CDB) spectra, along with the S and W parameters, are calculated for both intrinsic and oxygen-doped point defects (OC, OSi, OCVSi, and OSiVC). The analysis reveals that electron screening effects dominate the annihilation characteristics of the OSi defect, whereas positron localization induced by the vacancy is the predominant contributor in the case of OSiVC. This distinction results in clearly different momentum distributions of these two oxygen-related defects for different charge states. Overall, the PAS is demonstrated to be a powerful technique for distinguishing intrinsic vacancy-type defects and oxygen-doped composites in 3C-SiC. Combining the analysis of electron and positron density distributions, the electron localization and positron trapping behavior in defect systems with different charge states can be comprehensively understood. These first-principles results provide a solid theoretical foundation for identifying and characterizing the defects in oxygen-doped 3C-SiC by using positron annihilation spectroscopy.
  • 图 1  3C-SiC中本征缺陷及氧掺杂缺陷的形成能 (a) VC; (b) VSi; (c) VSi+C; (d) OSi; (e) OCVSi; (f) OSiVC

    Figure 1.  Formation energies of intrinsic and oxygen-doped defects in 3C-SiC: (a) VC; (b) VSi; (c) VSi+C; (d) OSi; (e) OCVSi; (f) OSiVC.

    图 2  (001)面电子-正电子密度分布 (a)无缺陷晶体; (b) OSi的中性态; (c) OSi的–1价态; (d) OSi的–2价态

    Figure 2.  Electron-positron density: (a) Defect-free crystal; (b) neutral state of OSi; (c) –1 charge state of OSi; (d) –2 charge state of OSi

    图 3  (001)面电子-正电子密度分布 (a) 无缺陷晶体; (b) OSiVC的中性态; (c) OSiVC的–1价态; (d) OSiVC的–2价态

    Figure 3.  Electron-positron density: (a) Defect-free crystal; (b) neutral state of OSiVC; (c) –1 charge state of OSiVC; (d) –2 charge state of OSiVC.

    图 4  (a) C, Si和O的多普勒谱; (b) 3C-SiC中VC, VSi, VSi+C, OC, OSi, OCVSi和OSiVC的多普勒谱

    Figure 4.  (a) Doppler spectra of the C, Si, and O; (b) Doppler spectra of the VC, VSi, VSi+C, OC, OSi, OCVSi and OSiVC defects in 3C-SiC.

    图 5  (a) OSi不同价态与无缺陷3C-SiC超胞的多普勒谱曲线; (b) OSiVC不同价态与无缺陷3C-SiC超胞的多普勒谱曲线

    Figure 5.  Momentum distributions ratio curves of annihilating electron-positron pairs for various charge states of (a) OSi and (b) OSiVC in 3C-SiC.

    表 1  四种方案计算的正电子湮没寿命(单位: ps)

    Table 1.  Calculated positron annihilation lifetimes (ps) for the four schemes.

    类型 BNLDA APGGA PHNCGGA QMCGGA 文献
    bulk 150 150 147 153 145[56]
    ${\text{V}}_{\text{C}}^{0}$ 151 150 147 152 150[23]
    ${\text{V}}_{{\text{Si}}}^{0}$ 241 238 233 242 227[54]
    ${\text{V}}_{{\text{Si}}}^{1 - }$ 237 233 229 238 225[54]
    ${\text{V}}_{{\text{Si}}}^{2 - }$ 236 232 228 237 222[54]
    ${\text{V}}_{{\text{Si} + {\text{C}}}}^{0}$ 250 249 243 251
    ${\text{V}}_{{\text{Si} + {\text{C}}}}^{1 - }$ 243 242 236 245
    ${\text{V}}_{{\text{Si} + {\text{C}}}}^{2 - }$ 239 244 235 242
    ${\text{O}}_{{\text{Si}}}^{0}$ 164 170 164 169
    ${\text{O}}_{{\text{Si}}}^{1 - }$ 167 187 175 176
    ${\text{O}}_{{\text{Si}}}^{2 - }$ 167 187 174 175
    ${{\text{O}}_{\text{C}}}{\text{V}}_{{\text{Si}}}^{0}$ 239 242 234 242
    ${{\text{O}}_{\text{C}}}{\text{V}}_{{\text{Si}}}^{1 - }$ 237 242 234 240
    ${{\text{O}}_{\text{C}}}{\text{V}}_{{\text{Si}}}^{2 - }$ 234 240 231 238
    ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{0}$ 181 186 180 186
    ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{1 - }$ 183 202 190 192
    ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{2 - }$ 183 202 190 191
    DownLoad: CSV

    表 2  3C-SiC中缺陷态与无缺陷态的相对SrelWrel参数

    Table 2.  Relative Srel and Wrel parameters of intrinsic defects and oxygen-doped defects in 3C-SiC.

    Defect typeSrelWrel
    VC1.0200.948
    VSi1.0630.872
    VSi+C1.0820.790
    OC1.0000.999
    OSi0.9971.009
    OCVSi1.0251.002
    OSiVC0.9881.228
    DownLoad: CSV

    表 3  针对OSi和OSiVC的各种电荷态与无缺陷态的相对SrelWrel参数

    Table 3.  Relative Srel and Wrel parameters calculated for various charge states of OSi and OSiVC.

    Defect typeSrelWrel
    ${\text{O}}_{{\text{Si}}}^{0}$0.9971.009
    ${\text{O}}_{{\text{Si}}}^{1 - }$0.9841.087
    ${\text{O}}_{{\text{Si}}}^{2 - }$0.9831.092
    ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{0}$0.9881.228
    ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{1 - }$0.9901.210
    ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{2 - }$0.9901.209
    DownLoad: CSV
  • [1]

    Petti D A, Buongiorno J, Maki J T, Hobbins R R, Miller G K 2003 Nucl. Eng. Des. 222 281Google Scholar

    [2]

    Franceschini F, Ruddy F H 2011 Silicon Carbide Neutron Detectors (Rijeka: InTech) pp275-296

    [3]

    Jiang W L, Jiao L, Wang H Y 2011 J. Am. Ceram. Soc. 94 4127Google Scholar

    [4]

    Fan X J, Ye R Q, Peng Z W, Wang J J, Fan A L, Guo X 2016 Nanotechnology 27 255604Google Scholar

    [5]

    张雨萌, 朱丽慧, 班志刚, 刘一雄 2012 硬质合金 29 66Google Scholar

    Zhang Y M, Zhu L H, Ban Z G, Liu Y X 2012 Hard Alloy 29 66Google Scholar

    [6]

    王堋人, 苟燕子, 王浩 2020 无机材料学报 35 525Google Scholar

    Wang P R, Gou Y Z, Wang H 2020 J. Inorg. Mater. 35 525Google Scholar

    [7]

    Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T 1998 Nature 391 773Google Scholar

    [8]

    Ishikawa T 2005 Polymeric and Inorganic Fibers (Berlin, Heidelberg: Springer,) (Vol. 178) p109

    [9]

    Rosso E F, Baierle R J 2013 Chem. Phys. Lett. 568 140

    [10]

    Gali A, Heringer D, Deák P, Hajnal Z, Frauenheim T, Devaty R P, Choyke W J 2002 Phys. Rev. B 66 125208Google Scholar

    [11]

    West R N 1973 Adv. Phys. 22 263Google Scholar

    [12]

    Puska M J, Nieminen R M 1994 Rev. Mod. Phys. 66 841Google Scholar

    [13]

    张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角 2012 物理学报 61 237805

    Zhang L J, Wang L H, Liu J D, Li Q, Cheng B, Zhang J, An R, Zhao M L, Ye B J 2012 Acta Phys. Sin. 61 237805

    [14]

    张宏俊, 王栋, 陈志权, 王少阶, 徐友明, 罗锡辉 2008 物理学报 57 7333

    Zhang H J, Wang D, Chen Z Q, Wang S J, Xu Y M, Luo X H 2008 Acta Phys. Sin. 57 7333

    [15]

    张丽娟, 张传超, 廖威, 刘建党, 谷冰川, 袁晓东, 叶邦角 2015 物理学报 64 097802Google Scholar

    Zhang L J, Zhang C C, Liao W, Liu J D, Gu B C, Yuan X D, Ye B J 2015 Acta Phys. Sin. 64 097802Google Scholar

    [16]

    郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角 2010 物理学报 59 2789Google Scholar

    Hao Y P, Chen X L, Cheng B, Kong W, Xu H X, Du H J, Ye B J 2010 Acta Phys. Sin. 59 2789Google Scholar

    [17]

    黄世娟, 张文帅, 刘建党, 张杰, 李骏, 叶邦角 2014 物理学报 63 217804Google Scholar

    Huang S J, Zhang W S, Liu J D, Zhang J, Li J, Ye B J 2014 Acta Phys. Sin. 63 217804Google Scholar

    [18]

    许红霞, 郝颖萍, 韩荣典, 翁惠民, 杜淮江, 叶邦角 2011 物理学报 60 067803Google Scholar

    Xu H X, Hao Y P, Han R D, Weng H M, Du H J, Ye B J 2011 Acta Phys. Sin. 60 067803Google Scholar

    [19]

    刘建党 2010 博士学位论文(合肥: 中国科学技术大学)

    Liu J D 2010 Ph. D. Dissertation ( Hefei: University of Science and Technology of China

    [20]

    Lam C H, Lam T W, Ling C C, Fung S, Beling C D, Hang D S, Weng H M 2004 J. Phys. : Condens. Mat. 16 8409Google Scholar

    [21]

    Staab T E M, Puska M J, Nieminen R M, Torpo L M 2001 Materials Science Forum (Zurich: Trans Tech Publications Ltd) p533

    [22]

    Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar

    [23]

    Brauer G, Anwand W, Coleman P G, Knights A P, Plazaola F, Pacaud Y, Skorupa W, Störmer J, Willutzki P 1996 Phys. Rev. B 54 3084Google Scholar

    [24]

    Brauer G, Anwand W, Nicht E-M, Kuriplach J, Šob M, Wagner N, Coleman P G, Puska M J, Korhonen T 1996 Phys. Rev. B 54 2512Google Scholar

    [25]

    Kawasuso A, Yoshikawa M, Itoh H, Krause-Rehberg R, Redmann F, Higuchi T, Betsuyaku K 2006 Physica B 376 350

    [26]

    Hu X, Koyanagi T, Katoh Y, Wirth B D 2017 Phys. Rev. B 95 104103Google Scholar

    [27]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [28]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [29]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [30]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [31]

    Perdew J P, Kurth S, Zupan A, Blaha P 1999 Phys. Rev. Lett. 82 2544Google Scholar

    [32]

    Verma P, Truhlar D G 2017 J. Phys. Chem. C 121 7144Google Scholar

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [35]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [36]

    Rauch T, Munoz F, Marques M A L, Botti S 2021 Phys. Rev. B 104 064105

    [37]

    Zhang H T, Yan L, Tang X, Cheng G D 2024 Phys. Lett. A 525 129888Google Scholar

    [38]

    Levinshtein M E, Rumyantsev S L, Shur M S 2001 Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Hoboken: John Wiley & Sons) pp96-104

    [39]

    Nieminen R M, Boronski E, Lantto L J 1985 Phys. Rev. B 32 1377Google Scholar

    [40]

    Boroński E, Nieminen R M 1986 Phys. Rev. B 34 3820Google Scholar

    [41]

    Arponen J, Pajanne E 1979 Ann. Phys. 121 343Google Scholar

    [42]

    Barbiellini B, Puska M J, Torsti T, Nieminen R M 1995 Phys. Rev. B 51 7341Google Scholar

    [43]

    Kuriplach J, Barbiellini B 2014 13th International Workshop on Slow Positron Beam Techniques and Applications. Journal of Physics: Conference Series Munich, Germany, September 15-20, 2013 p180

    [44]

    Boroński E 2010 Nukleonika 55 9

    [45]

    Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996 Phys. Rev. Lett. 77 2097Google Scholar

    [46]

    Alatalo M, Asoka-Kumar P, Ghosh V J, Nielsen B, Lynn K G, Kruseman A C, Van Veen A, Korhonen T, Puska M J 1998 J. Phys. Chem. Solids 59 55Google Scholar

    [47]

    Szpala S, Asoka-Kumar P, Nielsen B, Peng J P, Hayakawa S, Lynn K G, Gossmann H J 1996 Phys. Rev. B 54 4722

    [48]

    Kawasuso A, Maekawa M, Betsuyaku K 2010 J. Phys. Conf. Ser. 225 012027Google Scholar

    [49]

    孔伟, 郗传英, 叶邦角, 翁惠民, 周先意, 韩荣典 2004 高能物理与核物理 28 1234

    Kong W, Xi C Y, Ye B J, Weng H M, Zhou X Y, Han R D 2004 High Energy Phys. Nucl. 28 1234

    [50]

    刘雄国, 邓力, 胡泽华, 李瑞, 付元光, 李刚, 王佳 2016 物理学报 65 092501Google Scholar

    Liu X G, Deng L, Hu Z H, Li R, Fu Y G, Li G, Wang J 2016 Acta Phys. Sin. 65 092501Google Scholar

    [51]

    Alatalo M, Barbiellini B, Hakala M, Kauppinen H, Korhonen T, Puska M J, Saarinen K, Hautojärvi P, Nieminen R M 1996 Phys. Rev. B 54 2397

    [52]

    Makkonen I, Hakala M, Puska M J 2006 Phys. Rev. B 73 035103

    [53]

    Tang Z, Toyama T, Nagai Y, Inoue K, Zhu Z Q, Hasegawa M 2008 J. Phys. : Condens. Matter 20 445203Google Scholar

    [54]

    Wiktor J, Jomard G, Torrent M, Bertolus M 2013 Phys. Rev. B 87 235207Google Scholar

    [55]

    Kawasuso A, Itoh H, Morishita N, Yoshikawa M, Ohshima T, Nashiyama I, Okada S, Okumura H, Yoshida S 1998 Appl. Phys. A 67 209Google Scholar

    [56]

    Panda B K, Brauer G, Skorupa W, Kuriplach J 2000 Phys. Rev. B 61 15848Google Scholar

    [57]

    Kawasuso A, Maekawa M, Fukaya Y, Yabuuchi A, Mochizuki I 2011 Phys. Rev. B 83 100406Google Scholar

  • [1] ZHENG Shijiao, YANG Wenyue, YANG Zhi, XU Lichun, FENG Lin, CHEN Bo, XUE Lin. Intrinsic point defects and optoelectronic properties in monolayer Z-Bi2O2Se. Acta Physica Sinica, doi: 10.7498/aps.74.20241701
    [2] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, doi: 10.7498/aps.73.20240754
    [3] Li Chong-Yang, Li Meng-De, Wang Mei, Li Tao, Liu Jian-Dang, Ye Bang-Jiao, Chen Zhi-Quan. Spin conversion of positronium of ZIFs nanocrystalline. Acta Physica Sinica, doi: 10.7498/aps.71.20220305
    [4] Xie Xiu-Hua, Li Bing-Hui, Zhang Zhen-Zhong, Liu Lei, Liu Ke-Wei, Shan Chong-Xin, Shen De-Zhen. Point defects: key issues for II-oxides wide-bandgap semiconductors development. Acta Physica Sinica, doi: 10.7498/aps.68.20191043
    [5] Deng Fa-Ming, Gao Tao, Shen Yan-Hong, Gong Yan-Rong. Effect of intense laser irradiation on the structural stability of 3C-SiC. Acta Physica Sinica, doi: 10.7498/aps.64.046301
    [6] Cui Yan-Xiang, Wang Yu-Mei, Li Fang-Hua. Atomic configurations of dislocation cores in a small-angle grain boundary of 3C-SiC film. Acta Physica Sinica, doi: 10.7498/aps.64.046801
    [7] Zhou Peng-Li, Zheng Shu-Kai, Tian Yan, Zhang Shuo-Ming, Shi Ru-Qian, He Jing-Fang, Yan Xiao-Bing. First principles calculation of dielectric properties of Al and N codoped 3C-SiC. Acta Physica Sinica, doi: 10.7498/aps.63.053102
    [8] Cheng Peng-Fei, Wang Hui, Li Sheng-Tao. Dielectric property and relaxation mechanism of CaCu3Ti4O12 ceramic. Acta Physica Sinica, doi: 10.7498/aps.62.057701
    [9] Tian Yu-Ming, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Chai Yue-Sheng, Zeng Yu-Shun, Wang Qiang. Effect of high-energy electron exposure on the charge states of defects in diamond. Acta Physica Sinica, doi: 10.7498/aps.62.188101
    [10] Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai. First principle study on B-Al co-doped 3C-SiC. Acta Physica Sinica, doi: 10.7498/aps.62.233101
    [11] Ji Chuan, Xu Jin. Effect of point defects on copper precipitation in heavily boron-doped Czochralski silicon p/p+ epitaxial wafer. Acta Physica Sinica, doi: 10.7498/aps.61.236102
    [12] Cao Yong-Jun, Tan Wei, Liu Yan. Coupling characteristics of point defect modes in two-dimensional magnonic crystals. Acta Physica Sinica, doi: 10.7498/aps.61.117501
    [13] Zhang Yan-Hui, Li Yan-Long, Gu Yue, Chao Yue-Sheng. Investigation of positron annihilation in Fe52Co34Hf7B6Cu1 amorphous alloy treated by intermediate frequency magnetic pulse. Acta Physica Sinica, doi: 10.7498/aps.61.167502
    [14] Wei Qi, Cheng Ying, Liu Xiao-Jun. The influence of point defect array on directional emission of phononic crystal waveguide. Acta Physica Sinica, doi: 10.7498/aps.60.124301
    [15] Chao Yue-Sheng, Guo Hong, Gao Xiang-Yu, Luo Li-Ping, Zhu Han-Xian. Investigation on annealed Fe43Co43Hf7B6Cu1 amorphous alloy by positron annihilation spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.60.017504
    [16] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.515
    [17] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, doi: 10.7498/aps.59.4818
    [18] Yi Chen-Hong, Mu Qing-Sun, Miao Tian-De. The DEM simulation for two-dimension granular system with point defects. Acta Physica Sinica, doi: 10.7498/aps.57.3636
    [19] Ma Xin-Guo, Jiang Jian-Jun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface. Acta Physica Sinica, doi: 10.7498/aps.57.3120
    [20] Lü Meng-Ya, Chen Zhou-Wen, Li Li-Xin, Liu Ri-Ping, Wang Wen-Kui. Theoretical study of phase transition of 3C-SiC under high pressure. Acta Physica Sinica, doi: 10.7498/aps.55.3576
Metrics
  • Abstract views:  440
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2025
  • Accepted Date:  07 July 2025
  • Available Online:  24 July 2025
  • /

    返回文章
    返回