-
Based on density functional theory (DFT), we systematically investigate the formation energies of intrinsic vacancy defects (VC, VSi, and VSi+C) and oxygen-related defects (OC, OSi, OCVSi, and OSiVC) in 3C-SiC. The results indicate that, among the considered defects, all except OC possess neutral or negative charge states, thereby making them suitable for detection via positron annihilation spectroscopy (PAS). Furthermore, we compute the electron–positron density distributions and positron annihilation lifetimes for the perfect 3C-SiC supercell and various defective configurations. It is found that the OSi and OSiVC complexes serve as effective positron trapping centers, leading to the formation of positron trapped states and a notable increase in annihilation lifetimes at the corresponding defect sites. In addition, coincidence Doppler broadening (CDB) spectra, along with the S and W parameters, are calculated for both intrinsic and oxygen-doped point defects (OC, OSi, OCVSi, and OSiVC). The analysis reveals that electron screening effects dominate the annihilation characteristics of the OSi defect, whereas positron localization induced by the vacancy is the predominant contributor in the case of OSiVC. This distinction results in clearly different momentum distributions for these two oxygen-related defects across various charge states. Overall, PAS is demonstrated to be a powerful technique for distinguishing intrinsic vacancy-type defects from oxygen-doped complexes in 3C-SiC. When combined with electron–positron density analysis, it enables a comprehensive understanding of electron localization and positron trapping behavior in defect systems with different charge states. These first-principles results provide a solid theoretical foundation for the identification and characterization of defects in oxygen-doped 3C-SiC using positron annihilation spectroscopy.
-
Keywords:
- 3C-SiC /
- Positron annihilation lifetime /
- Doppler broadening spectra /
- Point defect
-
[1] Petti D A, Buongiorno J, Maki J T, Hobbins R R, Miller G K 2003Nucl. Eng. Des. 222 281
[2] Franceschini F, Ruddy F H 2011Silicon Carbide Neutron Detectors (Rijeka:InTech) pp275-296
[3] Jiang W L, Jiao L, Wang H Y 2011J. Am. Ceram. Soc. 94 4127
[4] Fan X J, Ye R Q, Peng Z W, Wang J J, Fan A L, Guo X 2016Nanotechnology 27 255604
[5] Zhang Y M, Zhu L H, Ban Z G, Liu Y X 2012Hard Alloy 29 66(in Chinese)[张雨萌,朱丽慧,班志刚,刘一雄2012硬质合金29 66]
[6] Wang P R, Gou Y Z, Wang H 2020J. Inorg. Mater. 35 525(in Chinese)[王堋人,苟燕子,王浩2020无机材料学报35 525]
[7] Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T 1998Nature 391 773
[8] Ishikawa T 2005Polymeric and Inorganic Fibers:178 109
[9] Rosso E F, Baierle R J 2013Chem. Phys. Lett. 568 140
[10] Gali A, Heringer D, Deák P, Hajnal Z, Frauenheim T, Devaty R P, Choyke W J 2002Phys. Rev. B 66 125208
[11] West R N 1973Adv. Phys. 22 263
[12] Puska M J, Nieminen R M 1994Rev. Mod. Phys. 66 841
[13] Zhang L J, Wang L H, Liu J D, Li Q, Cheng B, Zhang J, An R, Zhao M L, Ye B J 2012Acta Phys. Sin. 61 484(in Chinese)[张丽娟,王力海,刘建党,李强,成斌,张杰,安然,赵明磊,叶邦角2012物理学报61 484]
[14] Zhang H J, Wang D, Chen Z Q, Wang S J, Xu Y M, Luo X H 2008Acta Phys. Sin. 57 7333(in Chinese)[张宏俊,王栋,陈志权,王少阶,徐友明,罗锡辉2008物理学报57 7333]
[15] Zhang L J, Zhang C C, Liao W, Liu J D, Gu B C, Yuan X D, Ye B J 2015Acta Phys. Sin. 64 510(in Chinese)[张丽娟,张传超,廖威,刘建党,谷冰川,袁晓东,叶邦角2015物理学报64 510]
[16] Hao Y P, Chen X L, Cheng B, Kong W, Xu H X, Du H J, Ye B J 2010Acta Phys. Sin. 59 2789(in Chinese)[郝颖萍,陈祥磊,成斌,孔伟,许红霞,杜淮江,叶邦角2010物理学报59 2789]
[17] Huang S J, Zhang W S, Liu J D, Zhang J, Li J, Ye B J 2014Acta Phys. Sin. 63 372(in Chinese)[黄世娟,张文帅,刘建党,张杰,李骏,叶邦角2014物理学报63 372]
[18] Xu H X, Hao Y P, Han R D, Weng H M, Du H J, Ye B J 2011Acta Phys. Sin. 60 712(in Chinese)[许红霞,郝颖萍,韩荣典,翁惠民,杜淮江,叶邦角2011物理学报60 712]
[19] Liu J D 2010Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[刘建党2010博士学位论文(合肥:中国科学技术大学)]
[20] Lam C H, Lam T W, Ling C C, Fung S, Beling C D, Hang D S, Weng H M 2004J. Phys.:Condens. Matter 16 8409
[21] Staab T E M, Puska M J, Nieminen R M, Torpo L M 2001 Materials Science Forum (Zurich:Trans Tech Publications Ltd) p533
[22] Tuomisto F, Makkonen I 2013Rev. Mod. Phys. 85 1583
[23] Brauer G, Anwand W, Coleman P G, Knights A P, Plazaola F, Pacaud Y, Skorupa W, Störmer J, Willutzki P 1996Phys. Rev. B 54 3084
[24] Brauer G, Anwand W, Nicht E-M, Kuriplach J, Šob M, Wagner N, Coleman P G, Puska M J, Korhonen T 1996Phys. Rev. B 54 2512
[25] Kawasuso A, Yoshikawa M, Itoh H, Krause-Rehberg R, Redmann F, Higuchi T, Betsuyaku K 2006Physica B 376 350
[26] Hu X, Koyanagi T, Katoh Y, Wirth B D 2017Phys. Rev. B 95 104103
[27] Kresse G, Hafner J 1993Phys. Rev. B 47 558
[28] Kresse G, Furthmüller J 1996Phys. Rev. B 54 11169
[29] Kresse G, Furthmüller J 1996Comput. Mater. Sci. 6 15
[30] Perdew J P, Wang Y 1992Phys. Rev. B 45 13244
[31] Perdew J P, Kurth S, Zupan A, Blaha P 1999Phys. Rev. Lett. 82 2544
[32] Verma P, Truhlar D G 2017J. Phys. Chem. C 121 7144
[33] Hohenberg P, Kohn W 1964Phys. Rev. 136 B864
[34] Kohn W, Sham L J 1965Phys. Rev. 140 A1133
[35] Blöchl P E 1994Phys. Rev. B 50 17953
[36] Rauch T, Munoz F, Marques M A L, Botti S 2021Phys. Rev. B 104 064105
[37] Zhang H T, Yan L, Tang X, Cheng G D 2024Phys. Lett. A 525 129888
[38] Levinshtein M E, Rumyantsev S L, Shur M S 2001Properties of Advanced Semiconductor Materials:GaN, AlN, InN, BN, SiC, SiGe (John Wiley & Sons, Hoboken) pp96-104
[39] Nieminen R M, Boronski E, Lantto L J 1985Phys. Rev. B 32 1377
[40] Boroński E, Nieminen R M 1986Phys. Rev. B 34 3820
[41] Arponen J, Pajanne E 1979Ann. Phys.121 343
[42] Barbiellini B, Puska M J, Torsti T, Nieminen R M 1995Phys. Rev. B 51 7341
[43] Kuriplach J, Barbiellini B. 2014. 13th International Workshop on Slow Positron Beam Techniques and Applications. Journal of Physics:Conference Series. Munich, Germany, September 15-20, 2013, p180
[44] Boroński E 2010NUKLEONIKA 55 9
[45] Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996Phys. Rev. Lett. 77 2097
[46] Alatalo M, Asoka-Kumar P, Ghosh V J, Nielsen B, Lynn K G, Kruseman A C, Van Veen A, Korhonen T, Puska M J 1998J. Phys. Chem. Solids 59 55
[47] Szpala S, Asoka-Kumar P, Nielsen B, Peng J P, Hayakawa S, Lynn K G, Gossmann H J 1996Phys. Rev. B 54 4722
[48] Kawasuso A, Maekawa M, Betsuyaku K 2010J. Phys. Conf. Ser. 225 012027
[49] Kong W, Xi C Y, Ye B J, Weng H M, Zhou X Y, Han R D 2004Chinese Physics C 28 1234(in Chinese)[孔伟,郗传英,叶邦角,翁惠民,周先意,韩荣典2004高能物理与核物理28 1234]
[50] Liu X G, Deng L, Hu Z H, Li R, Fu Y G, Li G, Wang J 2016Acta Phys. Sin. 65 42(in Chinese)[刘雄国,邓力,胡泽华,李瑞,付元光,李刚,王佳2016物理学报65 42]
[51] Alatalo M, Barbiellini B, Hakala M, Kauppinen H, Korhonen T, Puska M J, Saarinen K, Hautojärvi P, Nieminen R M 1996Phys. Rev. B 54 2397
[52] Makkonen I, Hakala M, Puska M J 2006Phys. Rev. B 73 035103
[53] Tang Z, Toyama T, Nagai Y, Inoue K, Zhu Z Q, Hasegawa M 2008J. Phys.:Condens. Matter 20 445203
[54] Wiktor J, Jomard G, Torrent M, Bertolus M 2013Phys. Rev. B 87 235207
[55] Kawasuso A, Itoh H, Morishita N, Yoshikawa M, Ohshima T, Nashiyama I, Okada S, Okumura H, Yoshida S 1998Appl. Phys. A 67 209
[56] Panda B K, Brauer G, Skorupa W, Kuriplach J 2000Phys. Rev. B 61 15848
[57] Kawasuso A, Maekawa M, Fukaya Y, Yabuuchi A, Mochizuki I 2011Phys. Rev. B 83 100406
Metrics
- Abstract views: 31
- PDF Downloads: 0
- Cited By: 0