Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of boron-doped graphene/blue-phosphorus heterojunction as anode materials for magnesium-ion batteries

TANG Jing FAN Kaimin WANG Kun HOU Jinying SHI Dandan DONG Hong

Citation:

First-principles study of boron-doped graphene/blue-phosphorus heterojunction as anode materials for magnesium-ion batteries

TANG Jing, FAN Kaimin, WANG Kun, HOU Jinying, SHI Dandan, DONG Hong
cstr: 32037.14.aps.74.20250848
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Magnesium-ion batteries (MIBs) are regarded as a promising alternative to lithium-ion batteries (LIBs) due to their material abundance, cost-effectiveness, and improved safety. The development of high-performance anode materials is crucial for the advancement of MIBs. In this work, the feasibility of boron-doped graphene/blue phosphorene heterojunctions BiGr/BP (i = 0, 1, 2, 3, 4) as potential anode materials for MIBs is systematically investigated using the density functional theory. Our results show that the average binding energies of BiGr/BP (i = 0, 1, 2, 3, 4) are negative, suggesting their suitability for experimental synthesis. The analyses of band structure and density of states reveal that BiGr/BP (i = 0, 1, 2, 3, 4) exhibit high conductivity, as the 2p orbitals of carbon and boron dominantly contribute to the density of states at the Fermi level. Magnesium (Mg) adsorption capacity rises with the increase of boron doping concentrations, indicating stronger interactions between the heterojunctions and Mg. At the highest doping concentration (i = 4), the adsorption energy of Mg adsorbed in the interlayer is –3.38 eV, demonstrating substantial potential for Mg storage. The ab initio molecular dynamics (AIMD) simulations at 300 K show minor fluctuations in total energy, confirming the thermal stability of B4Gr/BP. Climbing image nudged elastic band (CI-NEB) method is used to determine two diffusion pathways of Mg in the B4Gr/BP interlayer. Along Path II, the maximum diffusion barrier is 0.47 eV, suggesting rapid Mg diffusion in the B4Gr/BP interlayer. The average open-circuit voltage is 0.37 V, ensuring the safety of the charge-discharge process. The theoretical capacity is 286.04 mAh/g, which is twice that of the B4Gr/MoS2 system. In summary, boron doping significantly enhances the Mg storage capacity. Specifically, B4Gr/BP appears to be a promising candidate for high-performance anodes in MIBs, owing to its excellent stability, conductivity, Mg storage capacity, and electrochemical properties.
      Corresponding author: FAN Kaimin, fankm128@163.com
    • Funds: Project supported by the “KunlunTalents” Program of Qinghai Province, China (Grant No. 2025-QLGKLYCZX-022) and the Natural Science Foundation of Gansu Province, China (Grant No. 23JRRN0001).
    [1]

    Chen W D, Liang J, Yang Z H, Li G 2019 Energy Proc. 158 4363Google Scholar

    [2]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [3]

    Lv C W, Qin M L, He Y P, Wu M Q, Zhu Q S, Wu S Y 2025 Solid State Ionics 423 116820Google Scholar

    [4]

    Durajski A P, Kasprzak G T 2023 Phys. B 660 414902Google Scholar

    [5]

    Wang Y Q, Yang Z, Song J Y 2025 Mol. Phys. 24 e2482678Google Scholar

    [6]

    刘立林 2022 硕士学位论文 (石家庄: 河北师范大学)

    Liu L L 2022 M. S. Thesis (Shijiazhuang: Hebei Normal University

    [7]

    Guo Q, Zeng W, Liu S L, Li Y Q, Xu J Y, Wang J X, Wang Y 2021 Rare Met. 40 290Google Scholar

    [8]

    李欣悦, 高国翔, 高强, 刘春生, 叶小娟 2024 物理学报 73 118201Google Scholar

    Li X Y, Gao G X, Gao Q, Liu C S, Ye X J 2024 Acta Phys. Sin. 73 118201Google Scholar

    [9]

    Raccichini R, Varzi A, Passerini S, Scrosati B 2015 Nat. Mater. 14 271Google Scholar

    [10]

    Qiu Z, Cao F, Pan G X, Li C, Chen M H, Zhang Y Q, He X P, Xia Y, Xia X H, Zhang W K 2023 ChemPhysMater 2 267Google Scholar

    [11]

    Zhang L J, Zhang T H, Wang C, Jin W, Li Y, Wang H, Ding C C, Wang Z Y 2025 Chem. Phys. 594 112664Google Scholar

    [12]

    Qi J Q, Li Q, Huang M Y, Ni J J, Sui Y W, Meng Q K, Wei F X, Zhu L, Wei W Q 2024 Colloids Surf. A Physicochem. Eng. Asp. 683 132998Google Scholar

    [13]

    Fan K M, Tang J, Wu S Y, Yang C F, Hao J B 2017 Phys. Chem. Chem. Phys. 19 267Google Scholar

    [14]

    Cheng J Y, Gao L F, Li T, Mei S, Wang C, Wen B, Huang W C, Li C, Zheng G P, Wang H, Zhang H 2020 Nano-Micro Lett. 12 179Google Scholar

    [15]

    Sibari A, Marjaoui A, Lakhal, Kerrami Z, Kara A, Benaissa M, Ennaoui A, Hamedoun M, Benyoussef A, Mounkachi O 2018 Sol. Energy Mater. Sol. Cells 180 253Google Scholar

    [16]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921Google Scholar

    [17]

    Aierken Y, Cakir D, Sevik C, Peeters F M 2015 Phys. Rev. B 92 081408Google Scholar

    [18]

    Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 119 8662Google Scholar

    [19]

    Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H, Wang S Y 2017 Small 13 1700758Google Scholar

    [20]

    Kaddar Y, Zhang W, Enriquez H, Dappe Y J, Bendounan A, Dujardin G, Mounkachi O, El Kenz A, Benyoussef A, Kara A, Oughaddou H 2023 Adv. Funct. Mater. 33 2213664Google Scholar

    [21]

    Li Y, Wu W T, Ma F 2019 J. Mater. Chem. A 7 611Google Scholar

    [22]

    Mukherjee S, Kaloni T P 2012 J. Nano. Res. 14 1Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Steinmann S N, Corminboeuf C 2010 J. Chem. Theory Comput. 6 1990Google Scholar

    [28]

    Nosé S 2002 Mol. Phys. 100 191Google Scholar

    [29]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [30]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [31]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [32]

    Suragtkhuu S, Bat-Erdene M, Bati A S R, Shapter J G, Davaasambuu S, Batmunkh M 2020 J. Mater. Chem. A 8 20446Google Scholar

    [33]

    Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H, Gao Y L 2015 Sci. Rep. 5 9961Google Scholar

    [34]

    Bo T, Liu P F, Xu J P, Zhang J R, Chen Y B, Eriksson O, Wang F W, Wang B T 2018 Phys. Chem. Chem. Phys. 20 22168Google Scholar

    [35]

    Sun Z M, Yuan M W, Yang H, Lin L, Sun G B, Yang X J 2021 Appl. Surf. Sci. 543 148790Google Scholar

    [36]

    Pozzo M, Alfè D 2008 Phys. Rev. B 77 104103Google Scholar

    [37]

    Shomali E, Sarsari I A, Tabatabaei F, Mosaferi M, Seriani N 2019 Comput. Mater. Sci. 163 315Google Scholar

    [38]

    Obaidullah, Habiba U, Piya A A, Daula Shamim S U 2023 AIP Adv. 13 11Google Scholar

    [39]

    朱家铎 2025 博士学位论文 (西安: 西安电子科技大学)

    Zhu J D 2025 Ph. D. Dissertation (Xi’an: Xidian University

    [40]

    Zhang C M, Jiao Y L, He T W, Ma F X, Kou L Z, Liao T, Bottle S, Du A J 2017 Phys. Chem. Chem. Phys. 19 25886Google Scholar

    [41]

    Eames C, Islam M S. 2014 J. Am. Chem. Soc. 136 16270Google Scholar

  • 图 1  (a) B0Gr/BP, (b) B1Gr/BP, (c) B2Gr/BP, (d) B3Gr/BP, (e) B4Gr/BP的几何结构图

    Figure 1.  Geometric structure of (a) B0Gr/BP, (b) B1Gr/BP, (c) B2Gr/BP, (d) B3Gr/BP, (e) B4Gr/BP.

    图 2  AIMD模拟了300 K下的B4Gr/BP能量分布

    Figure 2.  AIMD simulations of the energy profiles of B4Gr/BP at 300 K.

    图 3  (a) B0Gr/BP, (b) B1Gr/BP, (c) B2Gr/BP, (d) B3Gr/BP, (e) B4Gr/BP的能带图(左侧)和态密度图(右侧)

    Figure 3.  Band structures (left panel) and DOS (right panel) of (a) B0Gr/BP, (b) B1Gr/BP, (c) B2Gr/BP, (d) B3Gr/BP, (e) B4Gr/BP.

    图 4  BiGr/BP(i = 0, 1, 2, 3, 4)上Mg的吸附位点俯视图(a)和侧视图(b)

    Figure 4.  Top (a) and side (b) views of the Mg adsorption sites on the BiGr/BP (i = 0, 1, 2, 3, 4).

    图 5  (a) B0Gr/BP和(b) B4Gr/BP的差分电荷密度, 其中蓝色和黄色的区域分别代表电子耗尽和积累(等值面为 0.00015 e/Å3)

    Figure 5.  Charge density difference of (a) B0Gr/BP and (b) B4Gr/BP. The blue and yellow regions represent electron depletion and accumulation, respectively (the isosurface value is 0.00015 e/Å3).

    图 6  (a) B0Gr/BP和(b) B4Gr/BP吸附Mg后的差分电荷密度, 其中蓝色和黄色的区域分别代表电子耗尽和积累(等值面为0.002 e/Å3)

    Figure 6.  Charge density difference of Mg adsorbed in (a) B0Gr/BP and (b) B4Gr/BP. The blue and yellow regions represent electron depletion and accumulation, respectively (the isosurface value is 0.002 e/Å3).

    图 7  Mg在B4Gr/BP层间的扩散路径和扩散势垒 (a) 路径Ⅰ; (b) 路径Ⅱ

    Figure 7.  Diffusion pathways and diffusion barriers of Mg in the interlayer: (a) Path Ⅰ; (b) Path Ⅱ.

    图 8  B4Gr/BP的开路电压

    Figure 8.  Open circuit voltage of B4Gr/BP.

    表 1  BiGr/BP (i = 0, 1, 2, 3, 4)的平均结合能、晶格常数、层间距、键长和键角

    Table 1.  Average binding energies, lattice constants, interlayer distances, bond lengths and bond angles of BiGr/BP (i = 0, 1, 2, 3, 4).

    Systems Eb/(meV·atom–1) a d Bondtype Distance/Å Type Angle/(°)
    B0Gr/BP –24.98 9.86 3.57 C—C
    P—P
    1.42
    2.26
    ∠C—C—C
    ∠P—P—P
    119.98—120.01
    93.06—93.11
    B1Gr/BP –24.55 9.90 3.59 C—C
    C—B
    P—P
    1.41—1.44
    1.49
    2.27
    ∠C—C—C
    ∠C—B—C
    ∠P—P—P
    119.29—122.72
    120.00
    93.04—93.43
    B2Gr/BP –23.80 9.94 3.59 C—C
    C—B
    P—P
    1.41—1.45
    1.50
    2.27
    ∠C—C—C
    ∠C—B—C
    ∠P—P—P
    119.66—123.58
    119.96—119.99
    93.49—93.72
    B3Gr/BP –24.33 9.99 3.58 C—C
    C—B
    P—P
    1.41—1.45
    1.50—1.51
    2.28
    ∠C—C—C
    ∠C—B—C
    ∠P—P—P
    118.34—123.70
    119.51—120.83
    93.70—93.97
    B4Gr/BP –19.75 10.04 3.53 C—C
    C—B
    P—P
    1.40—1.44
    1.50
    2.28
    ∠C—C—C
    ∠C—B—C
    ∠P—P—P
    117.47—124.64
    119.85—120.04
    93.85—94.39
    DownLoad: CSV

    表 2  Mg在BiGr/BP (i = 0, 1, 2, 3, 4)层间和外表面不同吸附位点的吸附能(eV)

    Table 2.  Mg adsorption energies (eV) at the interlayer and outer surface of BiGr/BP (i = 0, 1, 2, 3, 4)

    SystemMg/BiGr/BPBiGr/BP/MgBiGr/Mg/BlueP
    HcTpT1T2T3T4T5
    B0Gr/BP–0.25–0.44–1.05–1.00–1.02–1.02–1.00
    B1Gr/BP–0.88–0.73–2.52–1.87–2.19–2.15–1.87
    B2Gr/BP–0.95–0.85–2.82–2.22–2.53–2.53–2.23
    B3Gr/BP–1.06–0.91–3.08–2.80–2.84–2.90–3.02
    B4Gr/BP–1.61–1.04–3.36–3.33–3.38–3.17–3.17
    DownLoad: CSV
  • [1]

    Chen W D, Liang J, Yang Z H, Li G 2019 Energy Proc. 158 4363Google Scholar

    [2]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [3]

    Lv C W, Qin M L, He Y P, Wu M Q, Zhu Q S, Wu S Y 2025 Solid State Ionics 423 116820Google Scholar

    [4]

    Durajski A P, Kasprzak G T 2023 Phys. B 660 414902Google Scholar

    [5]

    Wang Y Q, Yang Z, Song J Y 2025 Mol. Phys. 24 e2482678Google Scholar

    [6]

    刘立林 2022 硕士学位论文 (石家庄: 河北师范大学)

    Liu L L 2022 M. S. Thesis (Shijiazhuang: Hebei Normal University

    [7]

    Guo Q, Zeng W, Liu S L, Li Y Q, Xu J Y, Wang J X, Wang Y 2021 Rare Met. 40 290Google Scholar

    [8]

    李欣悦, 高国翔, 高强, 刘春生, 叶小娟 2024 物理学报 73 118201Google Scholar

    Li X Y, Gao G X, Gao Q, Liu C S, Ye X J 2024 Acta Phys. Sin. 73 118201Google Scholar

    [9]

    Raccichini R, Varzi A, Passerini S, Scrosati B 2015 Nat. Mater. 14 271Google Scholar

    [10]

    Qiu Z, Cao F, Pan G X, Li C, Chen M H, Zhang Y Q, He X P, Xia Y, Xia X H, Zhang W K 2023 ChemPhysMater 2 267Google Scholar

    [11]

    Zhang L J, Zhang T H, Wang C, Jin W, Li Y, Wang H, Ding C C, Wang Z Y 2025 Chem. Phys. 594 112664Google Scholar

    [12]

    Qi J Q, Li Q, Huang M Y, Ni J J, Sui Y W, Meng Q K, Wei F X, Zhu L, Wei W Q 2024 Colloids Surf. A Physicochem. Eng. Asp. 683 132998Google Scholar

    [13]

    Fan K M, Tang J, Wu S Y, Yang C F, Hao J B 2017 Phys. Chem. Chem. Phys. 19 267Google Scholar

    [14]

    Cheng J Y, Gao L F, Li T, Mei S, Wang C, Wen B, Huang W C, Li C, Zheng G P, Wang H, Zhang H 2020 Nano-Micro Lett. 12 179Google Scholar

    [15]

    Sibari A, Marjaoui A, Lakhal, Kerrami Z, Kara A, Benaissa M, Ennaoui A, Hamedoun M, Benyoussef A, Mounkachi O 2018 Sol. Energy Mater. Sol. Cells 180 253Google Scholar

    [16]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921Google Scholar

    [17]

    Aierken Y, Cakir D, Sevik C, Peeters F M 2015 Phys. Rev. B 92 081408Google Scholar

    [18]

    Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 119 8662Google Scholar

    [19]

    Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H, Wang S Y 2017 Small 13 1700758Google Scholar

    [20]

    Kaddar Y, Zhang W, Enriquez H, Dappe Y J, Bendounan A, Dujardin G, Mounkachi O, El Kenz A, Benyoussef A, Kara A, Oughaddou H 2023 Adv. Funct. Mater. 33 2213664Google Scholar

    [21]

    Li Y, Wu W T, Ma F 2019 J. Mater. Chem. A 7 611Google Scholar

    [22]

    Mukherjee S, Kaloni T P 2012 J. Nano. Res. 14 1Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Steinmann S N, Corminboeuf C 2010 J. Chem. Theory Comput. 6 1990Google Scholar

    [28]

    Nosé S 2002 Mol. Phys. 100 191Google Scholar

    [29]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [30]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [31]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [32]

    Suragtkhuu S, Bat-Erdene M, Bati A S R, Shapter J G, Davaasambuu S, Batmunkh M 2020 J. Mater. Chem. A 8 20446Google Scholar

    [33]

    Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H, Gao Y L 2015 Sci. Rep. 5 9961Google Scholar

    [34]

    Bo T, Liu P F, Xu J P, Zhang J R, Chen Y B, Eriksson O, Wang F W, Wang B T 2018 Phys. Chem. Chem. Phys. 20 22168Google Scholar

    [35]

    Sun Z M, Yuan M W, Yang H, Lin L, Sun G B, Yang X J 2021 Appl. Surf. Sci. 543 148790Google Scholar

    [36]

    Pozzo M, Alfè D 2008 Phys. Rev. B 77 104103Google Scholar

    [37]

    Shomali E, Sarsari I A, Tabatabaei F, Mosaferi M, Seriani N 2019 Comput. Mater. Sci. 163 315Google Scholar

    [38]

    Obaidullah, Habiba U, Piya A A, Daula Shamim S U 2023 AIP Adv. 13 11Google Scholar

    [39]

    朱家铎 2025 博士学位论文 (西安: 西安电子科技大学)

    Zhu J D 2025 Ph. D. Dissertation (Xi’an: Xidian University

    [40]

    Zhang C M, Jiao Y L, He T W, Ma F X, Kou L Z, Liao T, Bottle S, Du A J 2017 Phys. Chem. Chem. Phys. 19 25886Google Scholar

    [41]

    Eames C, Islam M S. 2014 J. Am. Chem. Soc. 136 16270Google Scholar

  • [1] Li Xin-Yue, Gao Guo-Xiang, Gao Qiang, Liu Chun-Sheng, Ye Xiao-Juan. Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries. Acta Physica Sinica, 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [2] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [3] Liang Jin-Ling, Zhang Yun, Qiu Xiao-Yan, Wu Sheng-Yu, Luo Ya. First-principles study of Fe:Mg:LiTaO3 crystals. Acta Physica Sinica, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [4] Hou Bin-Peng, Gan Zuo-Liang, Lei Xue-Ling, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of reduction mechanism of oxygen molecule using nitrogen doped graphene as cathode material for lithium air batteries. Acta Physica Sinica, 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [5] Meng Fan-Shun, Zhao Xing, Li Jiu-Hui. The first-principles study on properties of B-doped at interstitial site of Cu∑5 grain boundary. Acta Physica Sinica, 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [6] Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai. First principle study on B-Al co-doped 3C-SiC. Acta Physica Sinica, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [7] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [8] Lin Ling, Zhu Jia-Jie, Fang Hong. First-principles study on cation-doped Lu2Si2O7. Acta Physica Sinica, 2013, 62(14): 147101. doi: 10.7498/aps.62.147101
    [9] Xia Zhong-Qiu, Li Rong-Ping. First principles study of rare earth doped in ZnTe used for CdTe solar cell back contact layer. Acta Physica Sinica, 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [10] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [11] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [12] Shi Li-Bin, Xiao Zhen-Lin. Origin of ferromagnetic properties in Ni doped ZnO by the first principles study. Acta Physica Sinica, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [13] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [14] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [15] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [16] Yang Min, Wang Liu-Ding, Chen Guo-Dong, An Bo, Wang Yi-Jun, Liu Guang-Qing. First-principles study on field emission of C-doped capped single-walled BNNT. Acta Physica Sinica, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [17] Chen Kun, Fan Guang-Han, Zhang Yong, Ding Shao-Feng. First principles study of In-N codoped ZnO. Acta Physica Sinica, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [18] Chen Kun, Fan Guang-Han, Zhang Yong. First principles study of optical properties of wurtzite ZnO with Mn-doping. Acta Physica Sinica, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [19] Ding Shao-Feng, Fan Guang-Han, Li Shu-Ti, Xiao Bing. First-principles study of the p-type doped InN. Acta Physica Sinica, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [20] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
Metrics
  • Abstract views:  683
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2025
  • Accepted Date:  20 July 2025
  • Available Online:  08 August 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回