Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of laminar properties of electron beam in traveling wave tube based on K-means clustering algorithm

SHEN Changsheng ZHANG Tianyang BAI Ningfeng CHEN Zhaofu FAN Hehong SUN Xiaohan

Citation:

Analysis of laminar properties of electron beam in traveling wave tube based on K-means clustering algorithm

SHEN Changsheng, ZHANG Tianyang, BAI Ningfeng, CHEN Zhaofu, FAN Hehong, SUN Xiaohan
cstr: 32037.14.aps.74.20250765
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to improve the stability and reliability of the traveling wave tube (TWT), the optimization and design of the electron beam have become a key part in vacuum electronic devices. Laminar properties are a key parameter for evaluating the quality of the electron beam. The transverse displacement of the particles in the laminar electron beam is proportional to the transverse velocity. In the phase space distribution image of non-laminar properties electrons at a certain position, there is no linear relationship between the transverse displacement and the transverse velocity. The energies of particles in the electron beam are different, so the particles have different initial velocities. The particle source at the electron beam waist in the electron gun is used as a particle source for the beam wave interaction simulation. The output characteristics of the TWT more closely resemble the actual ones. A method of simplifying the particles at the electron gun beam waist into macroparticles using the K-means clustering algorithm is proposed. The macroparticle is used as a particle source in the TWT interaction zone for simulating the beam wave interaction, which reduces the simulation time from 5.53 to 0.65 h and improves the simulation efficiency. Compared with the original particle, both the simplified particle generated by the K-means clustering algorithm and the simplified particle generated by the mesh model greatly reduce the computational load of the interaction zone simulation. Compared with the results from the grid model, the simulation results of the beam-wave interaction of macroparticles, obtained by using the K-means clustering algorithm, are closer to those of the beam-wave interaction, obtained by using the original particles. By adjusting the cathode divergence angle and the distance between the anode and cathode of the electron gun of a certain type of TWT, the simulation results show that when the divergence angle is adjusted within a range of 0°–1°, the larger the divergence angle, the larger the radial root mean square emittance value, the worse the laminar properties of the electron beam, and the power of the output signal of the TWT decreases. When the distance between the anode and cathode is adjusted within a range of 0.8–1.6 mm, the radial root mean square emittance decreases from 2.51 to 2.22 mm·mrad, the laminar properties of the electron beam are improved. The output power of the TWT increases from 328.34 to 414.10 W, and the operating frequency bandwidth with an output power greater than 300 W is expanded from 3 to 5 GHz. Therefore, the particle simplification model using the K-means clustering algorithm improves the simulation efficiency of the beam wave interaction. Based on the influence of the laminar properties of the electron beam on the performance of the TWT, the structural parameters of the electron gun can be optimized.
      Corresponding author: BAI Ningfeng, bnfeng@seu.edu.cn
    [1]

    Guo Z, Zhang R, Lai H, Lan F, Wang Z, Lu Z 2023 IEEE Trans. Electron Devices 70 2753Google Scholar

    [2]

    冯西贤, 缪国兴, 成红霞, 苏元盛, 罗川川 2024 第二十二届真空电子学学术年会 中国, 广州, 2024年5月9日 p2

    Feng X X, Liao G X, Chen H X, Su Y S, Luo C C 2024 Proceedings of the 22nd Academic Conference on Vacuum Electronics Guangzhou, China, May 9, 2024 p2

    [3]

    Pan R, Zhong C, Qian J 2024 IEEE Trans. Ind. Inf. 20 5914Google Scholar

    [4]

    Hou J, Zhang A 2020 IEEE Trans. Ind. Inf. 16 2477Google Scholar

    [5]

    Fang X, Xu Z, Ji H, Wang B, Huang Z 2023 IEEE Trans. Ind. Inf. 19 5476Google Scholar

    [6]

    Jiang Z, Lin R, Yang F, Wu B 2018 IEEE Trans. Ind. Inf. 14 1856Google Scholar

    [7]

    Jain A K 2010 Pattern Recognit. Lett. 31 651Google Scholar

    [8]

    Wang J, Shen C, Zhang J, Fan H, Bai N, Sun X 2023 International Vacuum Electronics Conference Chengdu, China, April 25–28, 2023 p1

    [9]

    Carlsten B E, Nichols K E, Shchegolkov D Y, Simakov E I 2016 IEEE Trans. Electron Devices 63 4493Google Scholar

    [10]

    Ge X, Xu J, Yue L, Yin H, Zhao G, Wang W 2020 International Vacuum Electronics Conference Monterey, CA, USA, October 19–22, 2020 p237

    [11]

    Shen C, Bai N, Zhang J, Sun X, Fan H 2019 International Vacuum Electronics Conference Busan, Korea (South), April 28–May 01, 2019 p1

    [12]

    Louksha O, Trofimov P, Malkin A 2023 International Vacuum Electronics Conference Chengdu, China, April 25–28, 2023 p1

    [13]

    Zhang J, Geng Z, Jin Q 2022 J. Phys. Conf. Ser. 2290 012030Google Scholar

    [14]

    David J, Ives R L, Tran H T, Bui T, Read M E 2008 IEEE Trans. Plasma Sci. 36 156Google Scholar

    [15]

    Liu W, Liu S 2011 Front. Electr. Electron. Eng. Chin. 6 556Google Scholar

    [16]

    Shen C, Wang J, Zhang J, Feng J, Sun X 2022 IEEE Trans. Plasma Sci. 50 2830Google Scholar

    [17]

    Lund S M, Kikuchi T, Davidson R C 2009 Phys. Rev. Spec. Top. Accel. Beams 12 114801Google Scholar

    [18]

    赵国庆, 岳玲娜, 王文祥, 宫玉彬, 魏彦玉, 黄民智 2008 强激光与粒子束 20 1159

    Zhao G Q, Yue L N, Wang W X, Gong Y B, Wei Y Y, Huang M Z 2008 High Power Laser Part. Beams 20 1159

    [19]

    Stockli M P, Welton R F, Keller R 2004 Rev. Sci. Instrum. 75 1646Google Scholar

    [20]

    Whaley D R 2014 IEEE Trans. Electron Devices 61 1726Google Scholar

    [21]

    李冬 2024 硕士学位论文(成都: 电子科技大学)

    Li D 2024 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • 图 1  层流电子注三种粒子轨道情况以及对应相空间分布图 (a) 平行电子注; (b) 汇聚的电子注; (c) 发散的电子注

    Figure 1.  Orbital conditions of three types of laminar electron particles and the corresponding phase space distribution diagrams: (a) Parallel electron beam; (b) convergent electron beam; (c) divergent electron beam.

    图 2  非层流电子注粒子轨道情况以及对应相空间分布图

    Figure 2.  Orbital conditions of non-laminar electron beam particles and the corresponding phase space distribution diagrams.

    图 3  粒子速度的矢量图

    Figure 3.  Vector diagram of particle momentum.

    图 4  使用K均值聚类算法的仿真流程图

    Figure 4.  Simulation properties chart using the K-means clustering algorithm.

    图 5  采用K均值聚类算法分析行波管的步骤

    Figure 5.  Steps of analyzing the TWT using the K-means clustering algorithm.

    图 6  宏粒子个数与行波管输出功率和仿真时间的关系

    Figure 6.  Relationship between the number of macro particles and the output power of the TWT as well as the simulation time.

    图 7  使用K均值聚类算法和网格模型将电子枪注腰处粒子简化为宏粒子 (a) 使用K均值聚类算法处理截面粒子; (b) 使用K均值聚类算法简化后宏粒子分布; (c) 使用网格模型处理截面粒子; (d) 使用网格模型简化后宏粒子分布

    Figure 7.  Particles at the waist of the electron gun are simplified into macroparticles by using the K-means clustering algorithm and the mesh model: (a) The cross-sectional particles are processed by using the K-means clustering algorithm; (b) the distribution of the macro particles after simplification by using the K-means clustering algorithm; (c) the cross-sectional particles are processed by using the mesh model; (d) the distribution of the macro particles after simplification by using the mesh model.

    图 8  不同输入功率信号下的输出功率图

    Figure 8.  Output power under signals with different input powers.

    图 9  实际电子枪的粒子源的发散角度与径向均方根发射度和行波管输出功率的关系

    Figure 9.  Relationship of the divergence angle of the particle source of the actual electron gun to the radial rms-emittance and the output power of the TWT.

    图 10  阴阳极间距离对粒子的横向和纵向速度的影响

    Figure 10.  Influence of the distance between the anode and cathode on the transverse and longitudinal velocities of particles.

    图 11  粒子横向速度对行波管输出信号增益的影响

    Figure 11.  Influence of the transverse velocity of particles on the output signal gain of the TWT.

    图 12  粒子纵向速度对行波管输出信号增益的影响

    Figure 12.  Influence of the longitudinal velocity of particles on the output signal gain of the TWT.

    图 13  阴阳极间距离变化对电子注径向均方根发射度和行波管输出功率的影响

    Figure 13.  Influence of the distance variation between the anode and cathode on the radial rms-emittance of the electron beam and the output power of the TWT.

    图 14  阴阳极间距离为0.8和1.6 mm时, 输入信号频率与行波管输出功率的关系

    Figure 14.  Relationship between the input signal frequency and the output power of the TWT when the distance between the anode and cathode is 0.8 mm and 1.6 mm respectively.

    表 1  螺旋线行波管参数

    Table 1.  Parameters of helical TWT.

    参数名称 参数值
    工作电压/V 9600
    工作电流/A 0.35
    整管长度/mm 241.5
    螺旋线螺距/mm 1.1
    螺旋线半径/mm 1.0
    螺旋线螺距角/(°) 9.9
    磁场峰值/T 0.905
    DownLoad: CSV
  • [1]

    Guo Z, Zhang R, Lai H, Lan F, Wang Z, Lu Z 2023 IEEE Trans. Electron Devices 70 2753Google Scholar

    [2]

    冯西贤, 缪国兴, 成红霞, 苏元盛, 罗川川 2024 第二十二届真空电子学学术年会 中国, 广州, 2024年5月9日 p2

    Feng X X, Liao G X, Chen H X, Su Y S, Luo C C 2024 Proceedings of the 22nd Academic Conference on Vacuum Electronics Guangzhou, China, May 9, 2024 p2

    [3]

    Pan R, Zhong C, Qian J 2024 IEEE Trans. Ind. Inf. 20 5914Google Scholar

    [4]

    Hou J, Zhang A 2020 IEEE Trans. Ind. Inf. 16 2477Google Scholar

    [5]

    Fang X, Xu Z, Ji H, Wang B, Huang Z 2023 IEEE Trans. Ind. Inf. 19 5476Google Scholar

    [6]

    Jiang Z, Lin R, Yang F, Wu B 2018 IEEE Trans. Ind. Inf. 14 1856Google Scholar

    [7]

    Jain A K 2010 Pattern Recognit. Lett. 31 651Google Scholar

    [8]

    Wang J, Shen C, Zhang J, Fan H, Bai N, Sun X 2023 International Vacuum Electronics Conference Chengdu, China, April 25–28, 2023 p1

    [9]

    Carlsten B E, Nichols K E, Shchegolkov D Y, Simakov E I 2016 IEEE Trans. Electron Devices 63 4493Google Scholar

    [10]

    Ge X, Xu J, Yue L, Yin H, Zhao G, Wang W 2020 International Vacuum Electronics Conference Monterey, CA, USA, October 19–22, 2020 p237

    [11]

    Shen C, Bai N, Zhang J, Sun X, Fan H 2019 International Vacuum Electronics Conference Busan, Korea (South), April 28–May 01, 2019 p1

    [12]

    Louksha O, Trofimov P, Malkin A 2023 International Vacuum Electronics Conference Chengdu, China, April 25–28, 2023 p1

    [13]

    Zhang J, Geng Z, Jin Q 2022 J. Phys. Conf. Ser. 2290 012030Google Scholar

    [14]

    David J, Ives R L, Tran H T, Bui T, Read M E 2008 IEEE Trans. Plasma Sci. 36 156Google Scholar

    [15]

    Liu W, Liu S 2011 Front. Electr. Electron. Eng. Chin. 6 556Google Scholar

    [16]

    Shen C, Wang J, Zhang J, Feng J, Sun X 2022 IEEE Trans. Plasma Sci. 50 2830Google Scholar

    [17]

    Lund S M, Kikuchi T, Davidson R C 2009 Phys. Rev. Spec. Top. Accel. Beams 12 114801Google Scholar

    [18]

    赵国庆, 岳玲娜, 王文祥, 宫玉彬, 魏彦玉, 黄民智 2008 强激光与粒子束 20 1159

    Zhao G Q, Yue L N, Wang W X, Gong Y B, Wei Y Y, Huang M Z 2008 High Power Laser Part. Beams 20 1159

    [19]

    Stockli M P, Welton R F, Keller R 2004 Rev. Sci. Instrum. 75 1646Google Scholar

    [20]

    Whaley D R 2014 IEEE Trans. Electron Devices 61 1726Google Scholar

    [21]

    李冬 2024 硕士学位论文(成都: 电子科技大学)

    Li D 2024 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • [1] Qiu Hai-Jian, Hu Yu-Lu, Hu Quan, Zhu Xiao-Fang, Li Bin. Nonlinear theory considering harmonic interaction using Eulerian hydrodynamic analysis. Acta Physica Sinica, 2018, 67(8): 088401. doi: 10.7498/aps.67.20180024
    [2] Yi Hong-Xia, Xiao Liu, Su Xiao-Bao. Application of transfer matrix method to calculating the effect of multiple internal reflections on the small signal gain ripple of TWT. Acta Physica Sinica, 2016, 65(12): 128401. doi: 10.7498/aps.65.128401
    [3] Wang Bing, Wen Guang-Jun, Wang Wen-Xiang. Dispersion characteristics of the coaxial interlaced disk-loaded waveguide slow-wave structure. Acta Physica Sinica, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [4] Yan Wei-Zhong, Hu Yu-Lu, Li Jian-Qing, Yang Zhong-Hai, Tian Yun-Xian, Li Bin. Research on the beam-wave interaction theory of folded waveguide traveling wave tubes based on three-port network model. Acta Physica Sinica, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [5] Liu Yang, Xu Jin, Xu Xiong, Shen Fei, Wei Yan-Yu, Huang Min-Zhi, Tang Tao, Wang Wen-Xiang, Gong Yu-Bin. Research on the V-shape folded rectangular groove slow-wave structure. Acta Physica Sinica, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [6] Yin Hai-Rong, Xu Jin, Yu Ling-Na, Gong Yu-Bing, Wei Yan-Yu. A wave-beam interaction theory for folded-waveguide traveling wave tubes. Acta Physica Sinica, 2012, 61(24): 244106. doi: 10.7498/aps.61.244106
    [7] Liu Qing-Lun, Wang Zi-Cheng, Liu Pu-Kun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [8] Hu Quan. Theory and simulation of the folded waveguide traveling-wave tube working in low voltage with changed period and big size. Acta Physica Sinica, 2012, 61(1): 014101. doi: 10.7498/aps.61.014101
    [9] Lai Jian-Qiang, Wei Yan-Yu, Xu Xiong, Shen Fei, Liu Yang, Huang Min-Zhi, Tang Tao, Gong Yu-Bin. Design and simulation of 140 GHz high power staggered double vane traveling-wave tube. Acta Physica Sinica, 2012, 61(17): 178501. doi: 10.7498/aps.61.178501
    [10] Liu Yang, Wei Yan-Yu, Shen Fei, Xu Xiong, Lai Jian-Qiang, Huang Ming-Zhi, Tang Tao, Gong Yu-Bin. Linear analysis of open-style dielectric-lined azimuthally periodic circular waveguide. Acta Physica Sinica, 2012, 61(16): 168401. doi: 10.7498/aps.61.168401
    [11] Yi Hong-Xia, Xiao Liu, Liu Pu-Kun, Hao Bao-Liang, Li Fei, Li Guo-Chao. Optimization of slow wave structures of space traveling wave tube based on collectability of spent beam. Acta Physica Sinica, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [12] Gao Peng, Booske John H., Yang Zhong-Hai, Li Bin, Xu Li, He Jun, Gong Yu-Bin, Tian Zhong. Physics and simulation of terahertz folded waveguide traveling wave tube regenerative feedback oscillators. Acta Physica Sinica, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [13] Hao Bao-Liang, Xiao Liu, Liu Pu-Kun, Li Guo-Chao, Jiang Yong, Yi Hong-Xia, Zhou Wei. Calculations of three-dimensional frequency-domain nonlinear beam-wave reaction for helix traveling wave tubes. Acta Physica Sinica, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [14] Yin Hai-Rong, Gong Yu-Bin, Wei Yan-Yu, Yue Ling-Na, Lu Zhi-Gang, Gong Hua-Rong, Huang Min-Zhi, Wang Wen-Xiang. Mode and band analysis of finite dielectric photonic crystals. Acta Physica Sinica, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [15] Gong Yu-Bin, Deng Ming-Jin, Duan Zhao-Yun, Lü Ming-Yi, Wei Yan-Yu, Wang Wen-Xiang. Research of the effect of attenuator on high-frequency characteristics of helical slow-wave structure. Acta Physica Sinica, 2007, 56(8): 4497-4503. doi: 10.7498/aps.56.4497
    [16] Xiao Liu, Su Xiao-Bao, Liu Pu-Kun. Study of space charge field based on sheath helix model of TWTS. Acta Physica Sinica, 2006, 55(10): 5150-5156. doi: 10.7498/aps.55.5150
    [17] Li Jian-Qing, Mo Yuan-Long. General theory of nonlinear beam-wave interaction in traveling-wave tubes. Acta Physica Sinica, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [18] Yue Ling-Na, Wang Wen-Xiang, Wei Yan-Yu, Gong Yu-Bin. The dispersion characteristics of the coaxial arbitrary-shaped-groove periodic slow-wave structure. Acta Physica Sinica, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [19] Hao Jian-Hong, Ding Wu, Zhang Zhi-Chou. Threshold analysis for the limit cycle and chaotic oscillation of the radiation field in a traveling wave tube amplifier. Acta Physica Sinica, 2003, 52(8): 1979-1983. doi: 10.7498/aps.52.1979
    [20] Hao Jian-Hong, Ding Wu. Limit cycle oscillating and chaos of the radiation field in a traveling wave tube amplifier. Acta Physica Sinica, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
Metrics
  • Abstract views:  690
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2025
  • Accepted Date:  14 July 2025
  • Available Online:  08 August 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回