Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear theory considering harmonic interaction using Eulerian hydrodynamic analysis

Qiu Hai-Jian Hu Yu-Lu Hu Quan Zhu Xiao-Fang Li Bin

Citation:

Nonlinear theory considering harmonic interaction using Eulerian hydrodynamic analysis

Qiu Hai-Jian, Hu Yu-Lu, Hu Quan, Zhu Xiao-Fang, Li Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Traveling wave tube amplifiers are one of the most widely used vacuum electronic devices which are employed in various applications, in the areas of such as radar, wireless communication and electronic countermeasures system. Among traveling wave tubes, space-borne helix traveling wave tubes which are of high power, high efficiency, high reliability, long life and radiation hardened, are extensively used in satellite transmitter, data communication system and global positioning system. With the rapid development of the multiphase digital modulation schemes, communication systems are placing greater demands on the output power, electronic efficiency and nonlinear distortion characteristics of space-borne helix traveling wave tubes. However, the nonlinear beam-wave interaction will lead to the generation of harmonics, and thus reduces the output power and electronic efficiency. The harmonics can also act to create beats with the fundamental wave, and thus generate these beat frequencies which are commonly known as intermodulation products. As a result, the bit-error-rate will be increased and the system performance will be compromised. Therefore, the generation of harmonics is of significant current interest in space-borne helix traveling wave tubes. Understanding this effect provides a strong motivation for nonlinear analysis of a helix traveling wave tube. In this paper, a continuous electron phase distribution is obtained by treating the discrete electron beam as a charge fluid based on the Lagrangian theory. Then, to obtain a nonlinear Eulerian theory considering harmonic interaction, the electron phases in Lagrangian theory have been expanded into a series of harmonic components. Considering the 0th component and 1st component of the electron phases only and integrating over the initial phase distribution with the help of the relation of Bessel function, the nonlinear Eulerian theory considering harmonic interaction is established. The nonlinear Eulerian theory considering harmonic interaction is compared to a Lagrangian theory on a set of traveling wave tube parameters which are based on a single section of L-and C-bands traveling wave tubes. It is found that the nonlinear Eulerian theory considering harmonic interaction agrees accords well with the Lagrangian theory before the saturation effect occurs. But, it begins to make a difference near saturation point where the electron overtaking happens. The maximum error in gain between the nonlinear Eulerian theory considering harmonic interaction and the Lagrangian theory is less than 4% at 1 dB gain compression point. So the present nonlinear Eulerian theory considering harmonic interaction can effectively describe harmonic generation at 1 dB gain compression point. The simulation results validate the correctness and effectiveness of our nonlinear Eulerian theory considering harmonic interaction. In futuristic future efforts, it is hoped that the present nonlinear Eulerian theory considering harmonic interaction may provide insights into the behavioral mechanisms of nonlinear effects in space-borne helix traveling wave tubes.
      Corresponding author: Hu Yu-Lu, yuluhu@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771105) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2016J065, ZYGX2016J066).
    [1]

    Abe D K, Levush B, Antonsen Jr T M, Whaley D R 2002 IEEE Trans. Plasma Sci. 30 1053

    [2]

    Whaley D R, Armstrong C M, Gannon B, Groshart G 1998 IEEE Trans. Plasma Sci. 26 912

    [3]

    Abe D K, Levush B, Antonsen Jr T M, Whaley D R 2002 Proceedings of the Vacuum Electronics Conference Monterey, CA, USA, April 25-25, 2002 p312

    [4]

    Katz A 2009 Microwave Magazine IEEE 2 37

    [5]

    Qiu J, Abe D, Antonsen Jr T M, Danly B G, Levush B 2002 Proceedings of the Microwave Symposium Digest Monterey USA, April 25-25, 2002 p457

    [6]

    Qiu J X, Abe D K, Antonsen Jr T M, Danly B G 2003 IEEE Trans. Microwave Theory Tech. 51 1911

    [7]

    Lau Y Y, Chernin D P, Wilsen C, Gilgenbach R M 2000 IEEE Trans. Plasma Sci. 28 959

    [8]

    Bai A Y, Zou C M, Mo Y L 1996 Journal of University of Electronic Science and Technology of China 25 43 (in Chinese)[白安永, 邹长民, 莫元龙 1996 电子科技大学学报 25 43]

    [9]

    Mo Y L, Xie Z L 1996 Journal of University of Electronic Science and Technology of China 25 625 (in Chinese)[莫元龙, 谢仲怜 1996 电子科技大学学报 25 625]

    [10]

    Dionne N J 1970 IEEE Trans. Electron Dev. 17 365

    [11]

    Li B, Yang Z H, Li J Q, Zhu X F, Huang T, Jin X L, Hu Q, Hu Y L, Xu L, Ma J J, Peng W F, Liao L, Xiao L, He G X 2009 IEEE Trans. Electron Dev. 56 919

    [12]

    Li B, Li J Q, Hu Q, Hu Y L, Xu L, Huang T, Jin X L, Zhu X F, Yang Z H 2014 IEEE Trans. Electron Dev. 61 1735

    [13]

    Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta Phys. Sin. 58 3118 (in Chinese)[郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟 2009 物理学报 58 3118]

    [14]

    Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese)[胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林 2009 物理学报 58 6665]

    [15]

    Li J Q, Mo Y L 2006 Acta Phys. Sin. 55 4177 (in Chinese)[李建清, 莫元龙 2006 物理学报 55 4177]

    [16]

    Chernin D, Antonsen Jr T M, Levush B, Whaley D R 2001 IEEE Trans. Electron Dev. 48 3

    [17]

    Duan Z Y, Gong Y B, Wei Y Y, Wang W X 2008 Chin. Phys. B 17 2484

    [18]

    Li B, Yang Z H 2003 Chin. Phys. 12 1235

    [19]

    Booske J H, Converse M C 2004 IEEE Trans. Plasma Sci. 32 1066

    [20]

    Datta S 1998 Inter. J. Electron. 85 377

    [21]

    Datta S, Reddy S, Jain P, Basu B 1999 Inter. J. Infr. Mill. Waves 20 483

    [22]

    Datta S K 2000 Inter. J. Electron. 87 89

    [23]

    Datta S K, Jain P K, Narayan R, Basu B N 1999 IEEE Trans. Electron Dev. 46 420

    [24]

    Whlbier J G, Booske J H, Dobson I 2004 IEEE Trans. Plasma Sci. 32 1073

    [25]

    Whlbier J G, Booske J H, Dobson I 2002 IEEE Trans. Plasma Sci. 30 1063

    [26]

    Whlbier J G, Dobson I, Booske J H 2002 Phys. Rev. E 66 056504

    [27]

    Whlbier J G, Booske J H 2004 Phys. Rev. E 69 066502

    [28]

    Hu Y L 2011 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[胡玉禄 2011 博士学位论文 (成都:电子科技大学)]

    [29]

    Hu Y L, Yang Z H, Li J, Li B 2015 Proceedings of the Vacuum Electronics Conference (IVEC) Beijing, April 27-29, 2015 p1

    [30]

    Dong C F, Zhang P, Chernin D, Lau Y Y 2015 IEEE Trans. Electron Dev. 62 4285

    [31]

    Antonsen Jr T M, Levush B 1998 IEEE Trans. Plasma Sci. 26 774

  • [1]

    Abe D K, Levush B, Antonsen Jr T M, Whaley D R 2002 IEEE Trans. Plasma Sci. 30 1053

    [2]

    Whaley D R, Armstrong C M, Gannon B, Groshart G 1998 IEEE Trans. Plasma Sci. 26 912

    [3]

    Abe D K, Levush B, Antonsen Jr T M, Whaley D R 2002 Proceedings of the Vacuum Electronics Conference Monterey, CA, USA, April 25-25, 2002 p312

    [4]

    Katz A 2009 Microwave Magazine IEEE 2 37

    [5]

    Qiu J, Abe D, Antonsen Jr T M, Danly B G, Levush B 2002 Proceedings of the Microwave Symposium Digest Monterey USA, April 25-25, 2002 p457

    [6]

    Qiu J X, Abe D K, Antonsen Jr T M, Danly B G 2003 IEEE Trans. Microwave Theory Tech. 51 1911

    [7]

    Lau Y Y, Chernin D P, Wilsen C, Gilgenbach R M 2000 IEEE Trans. Plasma Sci. 28 959

    [8]

    Bai A Y, Zou C M, Mo Y L 1996 Journal of University of Electronic Science and Technology of China 25 43 (in Chinese)[白安永, 邹长民, 莫元龙 1996 电子科技大学学报 25 43]

    [9]

    Mo Y L, Xie Z L 1996 Journal of University of Electronic Science and Technology of China 25 625 (in Chinese)[莫元龙, 谢仲怜 1996 电子科技大学学报 25 625]

    [10]

    Dionne N J 1970 IEEE Trans. Electron Dev. 17 365

    [11]

    Li B, Yang Z H, Li J Q, Zhu X F, Huang T, Jin X L, Hu Q, Hu Y L, Xu L, Ma J J, Peng W F, Liao L, Xiao L, He G X 2009 IEEE Trans. Electron Dev. 56 919

    [12]

    Li B, Li J Q, Hu Q, Hu Y L, Xu L, Huang T, Jin X L, Zhu X F, Yang Z H 2014 IEEE Trans. Electron Dev. 61 1735

    [13]

    Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta Phys. Sin. 58 3118 (in Chinese)[郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟 2009 物理学报 58 3118]

    [14]

    Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese)[胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林 2009 物理学报 58 6665]

    [15]

    Li J Q, Mo Y L 2006 Acta Phys. Sin. 55 4177 (in Chinese)[李建清, 莫元龙 2006 物理学报 55 4177]

    [16]

    Chernin D, Antonsen Jr T M, Levush B, Whaley D R 2001 IEEE Trans. Electron Dev. 48 3

    [17]

    Duan Z Y, Gong Y B, Wei Y Y, Wang W X 2008 Chin. Phys. B 17 2484

    [18]

    Li B, Yang Z H 2003 Chin. Phys. 12 1235

    [19]

    Booske J H, Converse M C 2004 IEEE Trans. Plasma Sci. 32 1066

    [20]

    Datta S 1998 Inter. J. Electron. 85 377

    [21]

    Datta S, Reddy S, Jain P, Basu B 1999 Inter. J. Infr. Mill. Waves 20 483

    [22]

    Datta S K 2000 Inter. J. Electron. 87 89

    [23]

    Datta S K, Jain P K, Narayan R, Basu B N 1999 IEEE Trans. Electron Dev. 46 420

    [24]

    Whlbier J G, Booske J H, Dobson I 2004 IEEE Trans. Plasma Sci. 32 1073

    [25]

    Whlbier J G, Booske J H, Dobson I 2002 IEEE Trans. Plasma Sci. 30 1063

    [26]

    Whlbier J G, Dobson I, Booske J H 2002 Phys. Rev. E 66 056504

    [27]

    Whlbier J G, Booske J H 2004 Phys. Rev. E 69 066502

    [28]

    Hu Y L 2011 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[胡玉禄 2011 博士学位论文 (成都:电子科技大学)]

    [29]

    Hu Y L, Yang Z H, Li J, Li B 2015 Proceedings of the Vacuum Electronics Conference (IVEC) Beijing, April 27-29, 2015 p1

    [30]

    Dong C F, Zhang P, Chernin D, Lau Y Y 2015 IEEE Trans. Electron Dev. 62 4285

    [31]

    Antonsen Jr T M, Levush B 1998 IEEE Trans. Plasma Sci. 26 774

  • [1] Yi Hong-Xia, Xiao Liu, Su Xiao-Bao. Application of transfer matrix method to calculating the effect of multiple internal reflections on the small signal gain ripple of TWT. Acta Physica Sinica, 2016, 65(12): 128401. doi: 10.7498/aps.65.128401
    [2] Lü Ming, Ning Zhi, Yan Kai. Comparative study on the spatial evolution of liquid jet under linear and nonlinear stability theories. Acta Physica Sinica, 2016, 65(16): 166801. doi: 10.7498/aps.65.166801
    [3] Yan Wei-Zhong, Hu Yu-Lu, Li Jian-Qing, Yang Zhong-Hai, Tian Yun-Xian, Li Bin. Research on the beam-wave interaction theory of folded waveguide traveling wave tubes based on three-port network model. Acta Physica Sinica, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [4] Liu Yang, Xu Jin, Xu Xiong, Shen Fei, Wei Yan-Yu, Huang Min-Zhi, Tang Tao, Wang Wen-Xiang, Gong Yu-Bin. Research on the V-shape folded rectangular groove slow-wave structure. Acta Physica Sinica, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [5] Liu Qing-Lun, Wang Zi-Cheng, Liu Pu-Kun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [6] Lai Jian-Qiang, Wei Yan-Yu, Xu Xiong, Shen Fei, Liu Yang, Huang Min-Zhi, Tang Tao, Gong Yu-Bin. Design and simulation of 140 GHz high power staggered double vane traveling-wave tube. Acta Physica Sinica, 2012, 61(17): 178501. doi: 10.7498/aps.61.178501
    [7] Ma Jun-Jian, Zhu Xiao-Fang, Jin Xiao-Lin, Hu Yu-Lu, Li Jian-Qing, Yang Zhong-Hai, Li Bin. A time-dependent nonlinear theory and simulation for gyroklystron amplifier. Acta Physica Sinica, 2012, 61(20): 208402. doi: 10.7498/aps.61.208402
    [8] Liu Yang, Wei Yan-Yu, Shen Fei, Xu Xiong, Lai Jian-Qiang, Huang Ming-Zhi, Tang Tao, Gong Yu-Bin. Linear analysis of open-style dielectric-lined azimuthally periodic circular waveguide. Acta Physica Sinica, 2012, 61(16): 168401. doi: 10.7498/aps.61.168401
    [9] Hu Quan. Theory and simulation of the folded waveguide traveling-wave tube working in low voltage with changed period and big size. Acta Physica Sinica, 2012, 61(1): 014101. doi: 10.7498/aps.61.014101
    [10] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [11] Yin Hai-Rong, Xu Jin, Yu Ling-Na, Gong Yu-Bing, Wei Yan-Yu. A wave-beam interaction theory for folded-waveguide traveling wave tubes. Acta Physica Sinica, 2012, 61(24): 244106. doi: 10.7498/aps.61.244106
    [12] Gao Peng, Booske John H., Yang Zhong-Hai, Li Bin, Xu Li, He Jun, Gong Yu-Bin, Tian Zhong. Physics and simulation of terahertz folded waveguide traveling wave tube regenerative feedback oscillators. Acta Physica Sinica, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [13] Hao Bao-Liang, Xiao Liu, Liu Pu-Kun, Li Guo-Chao, Jiang Yong, Yi Hong-Xia, Zhou Wei. Calculations of three-dimensional frequency-domain nonlinear beam-wave reaction for helix traveling wave tubes. Acta Physica Sinica, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [14] Yin Hai-Rong, Gong Yu-Bin, Wei Yan-Yu, Yue Ling-Na, Lu Zhi-Gang, Gong Hua-Rong, Huang Min-Zhi, Wang Wen-Xiang. Mode and band analysis of finite dielectric photonic crystals. Acta Physica Sinica, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [15] Gong Yu-Bin, Deng Ming-Jin, Duan Zhao-Yun, Lü Ming-Yi, Wei Yan-Yu, Wang Wen-Xiang. Research of the effect of attenuator on high-frequency characteristics of helical slow-wave structure. Acta Physica Sinica, 2007, 56(8): 4497-4503. doi: 10.7498/aps.56.4497
    [16] Xiao Liu, Su Xiao-Bao, Liu Pu-Kun. Study of space charge field based on sheath helix model of TWTS. Acta Physica Sinica, 2006, 55(10): 5150-5156. doi: 10.7498/aps.55.5150
    [17] Li Jian-Qing, Mo Yuan-Long. General theory of nonlinear beam-wave interaction in traveling-wave tubes. Acta Physica Sinica, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [18] Yue Ling-Na, Wang Wen-Xiang, Wei Yan-Yu, Gong Yu-Bin. The dispersion characteristics of the coaxial arbitrary-shaped-groove periodic slow-wave structure. Acta Physica Sinica, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [19] Hao Jian-Hong, Ding Wu, Zhang Zhi-Chou. Threshold analysis for the limit cycle and chaotic oscillation of the radiation field in a traveling wave tube amplifier. Acta Physica Sinica, 2003, 52(8): 1979-1983. doi: 10.7498/aps.52.1979
    [20] Hao Jian-Hong, Ding Wu. Limit cycle oscillating and chaos of the radiation field in a traveling wave tube amplifier. Acta Physica Sinica, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
Metrics
  • Abstract views:  5456
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2018
  • Accepted Date:  18 January 2018
  • Published Online:  20 April 2019

/

返回文章
返回