Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In situ X-ray diffraction measurement of shock melting in vanadium

Hua Ying-Xin Chen Xiao-Hui Li Jun Hao Long Sun Yi Wang Yu-Feng Geng Hua-Yun

Citation:

In situ X-ray diffraction measurement of shock melting in vanadium

Hua Ying-Xin, Chen Xiao-Hui, Li Jun, Hao Long, Sun Yi, Wang Yu-Feng, Geng Hua-Yun
PDF
HTML
Get Citation
  • The solid-liquid phase transition under shock wave loading in materials is called shock melting. Shock melting is important not only in fields like high pressure EOS or material dynamic response, but also in applications like device protection in modern industry and national defense construction. The obtaining of precise melting curve is more than understanding the high pressure melting behavior, and it can provide the reliable evidence for the theoretical model of melting mechanism. So the solid-liquid phase transition under extreme conditions is a research hotspot, and a lot of researches have been carried out. But, the enormous discrepancy between the melting curve of dynamic loading and hydrostatic loading in transition metals, especially, the vanadium has been unclear for decades. The difference in melting temperature under 200 GPa between dynamic loading and hydrostatic loadirng is as large as twice (about 4000 K). Recently, Errandonea and Zhang’s experiments present a new insight into this discrepancy, indicating that the new shock melting curve is consistent with the extrapolated melting curve contained by LH-DAC. But all the dynamic loading experimental data are measured by macroscopic quantities; they can determine the occurrence of the phase transition, but cannot provide the microscopic structure of the material under extreme conditions. So, as the technic of in situ X-ray diffraction has developed well in recent years, we use the high power laser driving technic combining with in situ X-ray diffraction measurement to explore the structure of vanadium near the melting line. We measure the micro structure of vanadium at up to 200 GPa in shock experiment for the first time. We find that the bcc phase transition is not observed at around 60 GPa, which is different from previous experiments in DAC or gas gun loading experiments, but consistent with Chen’s leaser driving experiment. The result confirms that when the impact pressure is 155 GPa, vanadium still remains solid BCC phase. It becomes liquid at about 190 GPa. In contract to Zhang’s results, the DXRD melting point is consistent with the new melting line. This work provides the evidence of the consistency of shock and hydrostatic melting curve, confirming the phase boundary of vanadium under 200 GPa. This work has important scientific significance in understanding the pressure melting behavior of transition metals. The method in this work can be applied to the research of melting properties of other materials.
      Corresponding author: Li Jun, lijun102@caep.cn
    • Funds: Project supported by NSAF (Grant No. U1730248), the National Natural Science Foundation of China(Grant No. 11872056), and the National Key Laboratory of Shock Wave and Detonation Physics (Grant No. JCKYS2020212014)
    [1]

    Errandonea D, Schwager B, Ditz R, Gessmann C, Boehler R, Ross M 2001 Phys. Rev. B 63 132104Google Scholar

    [2]

    Dai C D, Jin X G, Zhou X M, Liu J J, Hu J B 2001 J. Phys. D:Appl. Phys. 34 3064Google Scholar

    [3]

    Yoo C S, Holmes N C, Ross M, Webb D J, Pike C 1993 Phys. Rev. Lett. 70 3931Google Scholar

    [4]

    Dai C D, Hu J B, Tan H 2009 J. Appl. Phys. 106 043519Google Scholar

    [5]

    Dewaele A, Mezouar M, Guignot N, Loubeyre P 2010 Phys. Rev. Lett. 104 255701Google Scholar

    [6]

    Hixson R S, Boness D A, Shaner J W, Moriarty J 1989 Phys. Rev. Lett. 62 637Google Scholar

    [7]

    Errandonea D 2005 Physica B: Condensed Matter 357 356Google Scholar

    [8]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar

    [9]

    Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter. 20 275218Google Scholar

    [10]

    Jenei Z, Liermann H P, Cynn H, Klepeis J H P, Baer B J, Evans W J 2011 Phys. Rev. B 83 054101

    [11]

    俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar

    [12]

    Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K R, Gumbrell E T, Luis J J D, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar

    [13]

    Wang Y X, Wu Q, Chen X R, Geng H Y 2016 Sci. Rep. 6 32419Google Scholar

    [14]

    Akahama Y, Kawaguchi S, Hirao N, Ohishi Y 2021 J. Appl. Phys. 129 135902Google Scholar

    [15]

    Wang Y X, Geng H Y, Wu Q, Chen X R, Sun Y 2017 J. Appl. Phys. 122 235903Google Scholar

    [16]

    Wang Y X, Geng H Y, Wu Q, Chen X R 2020 J. Chem. Phys. 152 024118Google Scholar

    [17]

    Errandonea D, MacLeod S G, Burakovsky L, Santamaria-Perez D, Proctor J E, Cynn H, Mezouar M 2019 Phys. Rev. B 100 094111Google Scholar

    [18]

    Li J, Wu Q, Li J B, Xue T, Tan Y, Zhou X M, Zhang Y J, Xiong Z W, Gao Z P, Sekine T 2020 Geophys. Res. Lett. 47 e2020GL087758

    [19]

    Zhang Y J, Tan Y, Geng H Y, Salke N P, Gao Z P, Li J, Sekine T, Wang Q M, Greenberg E, Prakapenka V B, Lin J F 2020 Phys. Rev. B 102 214104

    [20]

    Johnson Q, Mitchell A C 1972 Phys. Rev. Lett. 29 1369Google Scholar

    [21]

    Gupta Y M, Zimmerman K A, Rigg P A, Zaretsky E B, Savage D M, Bellamy P M 1999 Rev. Sci. Instrum. 70 4008Google Scholar

    [22]

    Kalantar D H, Chandler E A, Colvin J D, Lee R, Remington B A, Weber S V, Wiley L G, Hauer A, Wark J S, Loveridge A, Failor B H, Meyers M A, Ravichandran G 1999 Rev. Sci. Instrum. 70 629Google Scholar

    [23]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stolken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502Google Scholar

    [24]

    Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar

    [25]

    Gorman M G, Briggs R, McBride E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701Google Scholar

    [26]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, Wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [27]

    李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar

    Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar

    [28]

    陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊 2020 物理学报 69 246201Google Scholar

    Chen X H, Tan B Z, Xue T, Ma Y C, Jin S, Li Z J, Xin Y F, Li X Y, Li J 2020 Acta Phys. Sin. 69 246201Google Scholar

    [29]

    陶天炯, 翁继东, 王翔 2011 光电工程 38 39

    Tao T J, Weng J D, Wang X 2011 Opto-Electron. Engineer. 38 39

    [30]

    Zhang T, Wang S, Song H, Duan S, Liu H 2019 J. Appl. Phys. 126 205901Google Scholar

  • 图 1  基于高功率激光驱动的多晶材料瞬态X射线衍射诊断技术实验靶装置结构及测试系统布局示意图

    Figure 1.  The sketch of experimental setup for in situ X-ray diffraction of shock compressed polycrystalline.

    图 2  平面晶体谱仪测得激光驱动钒箔产生的X射线源能谱

    Figure 2.  The X-ray spectrum of vanadium foil driven by laser were measured by crystal spectrometer.

    图 3  无冲击载荷(静态样品)下多晶钒X射线衍射图谱 (a)数值模拟计算结果; (b)IP板实测图谱; (c)转换至2θ-φ空间的衍射图像; (d)沿φ方向积分的X射线衍射谱线, 图中红色虚线为各衍射峰的理论位置

    Figure 3.  The X-ray diffraction image of un-shocked crystalline vanadium: (a) the result of numerical simulation; (b) the original image recorded by image plates; (c) X-ray data projected into 2θ-φspace; (d) the one-dimensional X-ray diffraction pattern, the red dashed lines represent the theoretical position of diffraction peaks.

    图 4  冲击压力61.7 GPa下获得的钒原位衍射图谱 (a) IP板实测图谱, 新增衍射峰见红色箭头所示; (b)转换至2θ-φ空间的衍射图像; (c)沿φ方向积分后的X射线衍射谱线.

    Figure 4.  The in situ X-ray diffraction images under 61.7 GPa: (a) the original image recorded by image plates, the new diffraction peak is indicated by the arrow; (b) X-ray data projected into 2θ-φ space; (c) the one-dimensional X-ray diffraction pattern.

    图 5  原位X射线衍射给出的密度与自由面速度波剖面测量结果的比较 (a)自由面粒子速度剖面, 结合钒的已知Hugoniot关系计算给出冲击压力、密度; (b)DXRD衍射数据与压力-密度(P-ρ/ρ0)Hugoniot曲线的比较

    Figure 5.  (a) The particle velocity of free surface; (b) the pressure-density relation calculated by DXRD data compare to vanadium Hugoniot curve.

    图 6  更高冲击压力下钒的原位衍射图谱 (a) 187.3 GPa; (b) 197.6 GPa; (c) 253.7 GPa

    Figure 6.  The in situ X-ray diffraction pattern under higher pressure: (a) 187.3 GPa; (b) 197.6 GPa; (c) 253.7 GPa.

    图 7  冲击压缩下(155 GPa)单晶钒的衍射数据 (a)实测衍射图谱; (b)冲击压缩前后(002)晶面谱线

    Figure 7.  The X-ray diffraction data of shock compressed single crystal vanadium: (a) The diffraction image; (b) the diffraction data of shocked (002) and unshocked (002).

    图 8  钒的DXRD实验数据与早期动、静高压熔化线的比较[1,2]

    Figure 8.  The DXRD data of vanadium compared to previous shock/DAC melting line[1,2].

    图 9  钒动-静高压熔化线的统一相图[1,2,17,19,30]

    Figure 9.  The phase diagram of vanadium with melting curve at high pressure[1,2,17,19,30].

  • [1]

    Errandonea D, Schwager B, Ditz R, Gessmann C, Boehler R, Ross M 2001 Phys. Rev. B 63 132104Google Scholar

    [2]

    Dai C D, Jin X G, Zhou X M, Liu J J, Hu J B 2001 J. Phys. D:Appl. Phys. 34 3064Google Scholar

    [3]

    Yoo C S, Holmes N C, Ross M, Webb D J, Pike C 1993 Phys. Rev. Lett. 70 3931Google Scholar

    [4]

    Dai C D, Hu J B, Tan H 2009 J. Appl. Phys. 106 043519Google Scholar

    [5]

    Dewaele A, Mezouar M, Guignot N, Loubeyre P 2010 Phys. Rev. Lett. 104 255701Google Scholar

    [6]

    Hixson R S, Boness D A, Shaner J W, Moriarty J 1989 Phys. Rev. Lett. 62 637Google Scholar

    [7]

    Errandonea D 2005 Physica B: Condensed Matter 357 356Google Scholar

    [8]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar

    [9]

    Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter. 20 275218Google Scholar

    [10]

    Jenei Z, Liermann H P, Cynn H, Klepeis J H P, Baer B J, Evans W J 2011 Phys. Rev. B 83 054101

    [11]

    俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar

    [12]

    Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K R, Gumbrell E T, Luis J J D, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar

    [13]

    Wang Y X, Wu Q, Chen X R, Geng H Y 2016 Sci. Rep. 6 32419Google Scholar

    [14]

    Akahama Y, Kawaguchi S, Hirao N, Ohishi Y 2021 J. Appl. Phys. 129 135902Google Scholar

    [15]

    Wang Y X, Geng H Y, Wu Q, Chen X R, Sun Y 2017 J. Appl. Phys. 122 235903Google Scholar

    [16]

    Wang Y X, Geng H Y, Wu Q, Chen X R 2020 J. Chem. Phys. 152 024118Google Scholar

    [17]

    Errandonea D, MacLeod S G, Burakovsky L, Santamaria-Perez D, Proctor J E, Cynn H, Mezouar M 2019 Phys. Rev. B 100 094111Google Scholar

    [18]

    Li J, Wu Q, Li J B, Xue T, Tan Y, Zhou X M, Zhang Y J, Xiong Z W, Gao Z P, Sekine T 2020 Geophys. Res. Lett. 47 e2020GL087758

    [19]

    Zhang Y J, Tan Y, Geng H Y, Salke N P, Gao Z P, Li J, Sekine T, Wang Q M, Greenberg E, Prakapenka V B, Lin J F 2020 Phys. Rev. B 102 214104

    [20]

    Johnson Q, Mitchell A C 1972 Phys. Rev. Lett. 29 1369Google Scholar

    [21]

    Gupta Y M, Zimmerman K A, Rigg P A, Zaretsky E B, Savage D M, Bellamy P M 1999 Rev. Sci. Instrum. 70 4008Google Scholar

    [22]

    Kalantar D H, Chandler E A, Colvin J D, Lee R, Remington B A, Weber S V, Wiley L G, Hauer A, Wark J S, Loveridge A, Failor B H, Meyers M A, Ravichandran G 1999 Rev. Sci. Instrum. 70 629Google Scholar

    [23]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stolken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502Google Scholar

    [24]

    Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar

    [25]

    Gorman M G, Briggs R, McBride E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701Google Scholar

    [26]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, Wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [27]

    李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar

    Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar

    [28]

    陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊 2020 物理学报 69 246201Google Scholar

    Chen X H, Tan B Z, Xue T, Ma Y C, Jin S, Li Z J, Xin Y F, Li X Y, Li J 2020 Acta Phys. Sin. 69 246201Google Scholar

    [29]

    陶天炯, 翁继东, 王翔 2011 光电工程 38 39

    Tao T J, Weng J D, Wang X 2011 Opto-Electron. Engineer. 38 39

    [30]

    Zhang T, Wang S, Song H, Duan S, Liu H 2019 J. Appl. Phys. 126 205901Google Scholar

  • [1] Xie Jing, Wang Li, Liu Chong, Zhang Yan-Li, Liu Qiang, Wang Tao, Chai Zhi-Hao, Xia Zhi-Qiang, Yang Lin, Zhang Pan-Zheng, Zhu Bao-Qiang. Improvement of fundamental frequency performance of SGII-UP laser facility. Acta Physica Sinica, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [2] Jiang Yuan-Qi. Simulation and analysis of melting behavior of local atomic structure of refractory metals vanadium. Acta Physica Sinica, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [3] Chen Xiao-Hui, Tan Bo-Zhong, Xue Tao, Ma Yun-Can, Jin Sai, Li Zhi-Jun, Xin Yue-Feng, Li Xiao-Ya, Li Jun. In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction. Acta Physica Sinica, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [4] Li Jun, Chen Xiao-Hui, Wu Qiang, Luo Bin-Qiang, Li Mu, Yang Qing-Guo, Tao Tian-Jiong, Jin Ke, Geng Hua-Yun, Tan Ye, Xue Tao. Experimental investigation on dynamic lattice response by in-situ Xray diffraction method. Acta Physica Sinica, 2017, 66(13): 136101. doi: 10.7498/aps.66.136101
    [5] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [6] Cui Li-Juan, Gao Jin, Du Yu-Feng, Zhang Gao-Wei, Zhang Lei, Long Yi, Yang Shan-Wu, Zhan Qian, Wan Fa-Rong. Characterization of dislocation loops in hydrogen-ion irradiated vanadium. Acta Physica Sinica, 2016, 65(6): 066102. doi: 10.7498/aps.65.066102
    [7] Yu Yu-Ying, Tan Ye, Dai Cheng-Da, Li Xue-Mei, Li Ying-Hua, Tan Hua. Sound velocities of vanadium under shock compression. Acta Physica Sinica, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [8] Wang Ling, Wang He-Jin, Li Ting. In situ high temperature X-ray diffraction study of anatase and rutile. Acta Physica Sinica, 2013, 62(14): 146402. doi: 10.7498/aps.62.146402
    [9] Zhang Guo-Wen, Lu Xing-Qiang, Cao Hua-Bao, Yin Xian-Hua, Lü Feng-Nian, Zhang Zhen, Li Jing-Hui, Wang Ren-Gui, Ma Wei-Xin, Zhu Jian. Diffraction effect of high-power laser beams through contamination particles. Acta Physica Sinica, 2012, 61(2): 024201. doi: 10.7498/aps.61.024201
    [10] Cai Zhao-Bin, Zhao Jian-Lin, Peng Tao, Li Dong. Hot-images induced by the random distribution defects in high power laser systems. Acta Physica Sinica, 2011, 60(11): 114209. doi: 10.7498/aps.60.114209
    [11] Wang You-Wen, Deng Jian-Qin, Wen Shuang-Chun, Tang Zhi-Xiang, Fu Xi-Quan, Fan Dian-Yuan. Experimental study of the nonlinear hot image effect of broadband pulsed laser beams. Acta Physica Sinica, 2009, 58(3): 1738-1744. doi: 10.7498/aps.58.1738
    [12] Feng Ze-Hu, Fu Xi-Quan, Zhang Li-Fu, Xu Hui-Wen, Wen Shuang-Chun. Experimental research of small-scale self-focusing of ultrashort pulse with spatial modulation. Acta Physica Sinica, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [13] Wang You-Wen, Hu Yong-Hua, Wen Shuang-Chun, You Kai-Ming, Fu Xi-Quan. Study of nonlinear hot image effect of Gaussian optical beams. Acta Physica Sinica, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [14] Xie Liang-Ping, Zhao Jian-Lin, Su Jing-Qin, Jing Feng, Wang Wen-Yi, Peng Han-Sheng. Theoretical analysis of hot image effect from phase scatterer. Acta Physica Sinica, 2004, 53(7): 2175-2179. doi: 10.7498/aps.53.2175
    [15] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [16] LUO JIAN, YAN HONG, TAO KUN. X-RAY DIFFRACTION PHASE DEPTH PROFILING FOR POLYCRYSTAL WITH CONTINUOUS PHASE DEPTH DISTRIBUTION. Acta Physica Sinica, 1995, 44(11): 1788-1792. doi: 10.7498/aps.44.1788
    [17] BAI HAI-YANG, CHEN HONG, ZHANG YUN, WANG WEN-KUI. STUDY ON SOLID STATE REACTION INTERDIFFUSION OF Fe-Ti MULTILAYER MODULATED FILMS WITH DYNAMIC IN SITU X-RAY DIFFRACTION. Acta Physica Sinica, 1993, 42(7): 1134-1140. doi: 10.7498/aps.42.1134
    [18] WANG WEI-HUA, BAI HAI-YANG, ZHANG YUN, CHEN HONG, WANG WEN-KUI. STUDY THE DIFFUSION MECHANISM OF Ni IN AMORPHOUS Si BY X-RAY DIFFRACTION. Acta Physica Sinica, 1993, 42(9): 1505-1509. doi: 10.7498/aps.42.1505
    [19] TIAN LIANG-GUANG, ZHU NAN-CHANG, CHEN JING-YI, LI RUN-SHEN, XU SHUN-SHENG, ZHOU GUO-LIANG. X-RAY DOUBLE-CRYSTAL DIFFRACTION STUDY OF HIGH QUALITY GexSi1-x/Si STRAINED LAYER SUPERLATTICE. Acta Physica Sinica, 1991, 40(3): 441-448. doi: 10.7498/aps.40.441
    [20] . Acta Physica Sinica, 1965, 21(6): 1304-1307. doi: 10.7498/aps.21.1304
Metrics
  • Abstract views:  3423
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2021
  • Accepted Date:  12 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回