Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Properties of secondary components in extensive air shower of cosmic rays in knee energy region

Zhang Feng Liu Hu Zhu Feng-Rong

Citation:

Properties of secondary components in extensive air shower of cosmic rays in knee energy region

Zhang Feng, Liu Hu, Zhu Feng-Rong
PDF
HTML
Get Citation
  • The “knee” of cosmic ray spectra reflects the maximum energy accelerated by galactic cosmic ray sources or the limit to the ability of galaxy to bind cosmic rays. The measuring of individual energy spectra is a crucial tool to ascertain the origin of the knee. However, the measuring of energy and the identifying of primary nuclei are the foundation of measuring the energy spectra of individual components. The Extensive Air Shower of cosmic rays in the knee energy region is simulated via CORSIKA software. The energy resolution for different secondary components (include electron, gamma, muon, neutron and Cherenkov light) and primary nuclei identification capability are studied. The energy reconstruction by using electromagnetic particles (electron, gamma and Cherenkov light) in the energy around “knee” is better than by using other secondary particles. The resolution is 10%–19% for proton, and 4%–8% for iron. For the case of primary nuclei identification capability, the discriminability of density of muons is best both at low (~100 TeV) and high (~10 PeV) energy, the discriminability of the shape of lateral distribution of electron and gamma-rays are good at low energy and the discriminability of density of neutrons is good at high energy. The differences between the lateral distributions of secondary particles simulated by EPOS-LHC and QGSJet-Ⅱ-04 hadronic model are studied. For electron, gamma and Cherenkov light, the differences of the number of particles are within 5%; for muon, when the perpendicular distance from the shower axis is greater than 100 m, the difference of the muon number is within 5%; for neutron, the difference in neutron number between the two models is larger than 10%. The results in this work can provide important information for selecting the secondary components and detector type during energy reconstruction and identifying the primary nuclei of cosmic rays in the knee region.
      Corresponding author: Liu Hu, huliu@swjtu.edu.cn
    • Funds: Project supported by the Science and Technology Department of Sichuan Province, China (Grant Nos. 2021YFSY0031, 2020YFSY0016), the National Key R&D Program of China (Grant No. 2018YFA0404201), and the National Natural Science Foundation of China (Grant Nos. 12205244, 12147208).
    [1]

    Prosin V V, Berezhnev S F, Budnev N M, et al. 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 756 94Google Scholar

    [2]

    Blümer J, Engel R, Hörandel J R 2009 Prog. Part. Nucl. Phys. 63 293Google Scholar

    [3]

    Rújula De A 2006 Nucl. Phys. B 151 23Google Scholar

    [4]

    Ahn H S, Allison P, Bagliesi M G 2009 Astrophys. J. 707 593Google Scholar

    [5]

    Barao F 2004 Nucl. Instruments Methods Phys. Res. Sect. A 535 134Google Scholar

    [6]

    Alemanno F, An Q 2021 Phys. Rev. Lett. 126 201102Google Scholar

    [7]

    An Q, Asfandiyarov R, Azzarello P 2019 Sci. Adv. 5 3793Google Scholar

    [8]

    Chang J, Ambrosi G, An Q 2017 Astropart. Phys. 95 6Google Scholar

    [9]

    Sparvoli R 2013 Nucl. Phys. B 239 115Google Scholar

    [10]

    Antoni T, Apel W D, Badea A F 2005 Astropart. Phys. 24 1Google Scholar

    [11]

    Bartoli B, Bernardini P, Bi X J, Cao Z 2017 Astropart. Phys. 93 46Google Scholar

    [12]

    Ma X H, Bi Y J, Cao Z 2022 Chin. Phys. C 46 030001Google Scholar

    [13]

    Abbasi R, Abdou Y, Ackermann M 2013 Nucl. Instrum. Methods. Phys. Res. Sect. A 700 188Google Scholar

    [14]

    Abbasi R U, Abe M, Abu-Zayyad T 2018 Astro. J. 865 74Google Scholar

    [15]

    Amenomori M, Bao Y W 2021 Phys. Rev. Lett. 127 031102Google Scholar

    [16]

    Apel W D, Arteaga-Velázquez J C 2011 Phys. Rev. Lett. 107 171104Google Scholar

    [17]

    Apel W D, Arteaga-Velázquez J C 2013 Phys. Rev. D 87 081101Google Scholar

    [18]

    Bartoli B, Bernardini P, Bi X J, Cao Z 2015 Phys. Rev. D 92 092005Google Scholar

    [19]

    Aartsen M G, Abbasi R 2020 Phys. Rev. D 102 122001Google Scholar

    [20]

    Aartsen M G, Ackermann M, Adams J 2019 Phys. Rev. D 100 082002Google Scholar

    [21]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers

    [22]

    Capdevielle J N, Cohen F 2005 J. Phys. G 31 507Google Scholar

    [23]

    Apel W D, Badea A F, Bekk K 2006 Astropart. Phys. 24 467Google Scholar

    [24]

    Feng Y L, Zhang Y, Chen T L 2019 Chin. Phys. C 43 075002Google Scholar

    [25]

    Alexandru C E, Alexandru J, Lavinia-Elena G 2019 Chin. Phys. C 43 083001Google Scholar

    [26]

    李骢 2018 博士学位论文 (北京: 中国科学院大学)

    Li C 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [27]

    Rivera-Rangel D, Arteaga-Velázquez J C 2021 37th Inter-national Cosmic Ray Conference (ICRC 2021) Online–Berlin, Germany July 1223, 2021 p3721

    [28]

    Aharonian F, An Q, Axikegu 2021 Chin. Phys. C 45 025002Google Scholar

    [29]

    Conceição R, Peres L 2021 Eur. Phys. J. C 81 1Google Scholar

    [30]

    Yin L Q, Zhang S S, Cao Z, Bi B Y 2019 Chin. Phys. C 43 075001Google Scholar

    [31]

    Jin C, Chen S Z, He H H 2020 Chin. Phys. C 44 065002Google Scholar

  • 图 7  EPOS-LHC强相互作用模型和QGSJet-Ⅱ-04模型模拟的各种次级粒子横向分布的差异百分比, 其中原初粒子为不同能量的质子 (a) log10(E/GeV) = 5.1; (b) log10(E/GeV) = 6.9

    Figure 7.  Difference in percentage of the lateral distribution of secondary particles between EPOS-LHC and QGSJet-Ⅱ-04 hadronic interaction model, in which the primary particles are protons with different energies: (a) log10(E/GeV) = 5.1; (b) log10(E/GeV) = 6.9

    图 8  EPOS-LHC强相互作用模型和QGSJet-Ⅱ-04模型模拟的各种次级粒子横向分布的差异百分比, 其中原初粒子为不同能量的铁核 (a) log10(E/GeV) = 5.1; (b) log10(E/GeV) = 6.9

    Figure 8.  Difference in percentage of the lateral distribution of secondary particles between EPOS-LHC and QGSJet-Ⅱ-04 hadronic interaction model, in which the primary particles are irons with different energies: (a) log10(E/GeV) = 5.1; (b) log10(E/GeV) = 6.9.

    图 17  原初粒子铁核能量log10(E/GeV) = 6.1时, 垂直入射(θ = 0°)和天顶角为45° (θ = 45°)时次级成分中$ {\rho }_{\rm{e}} $(a), $ {s}_{\rm{\gamma }} $(b), ${\rho }_{\text{μ}}$(c), $ {\rho }_{\rm{n}} $ (d), 以及 $r=50\;{\rm{m}}\left(\rm{e}\right), r=150\;{\rm{m}}$ (f)处ρC的分布对比

    Figure 17.  Comparison of the distribution of $ {\rho }_{\rm{e}} $(a), $ {s}_{\rm{\gamma }} $(b), ${\rho }_{\text{μ}}$(c), $ {\rho }_{\rm{n}} $ (d) and $ {\rho }_{\rm{C}} $ at $r=50~\rm{m}~\left(\rm{e}\right)$, $r=150~\rm{m}$ (f) for θ = 0° and θ = 45°. The primary particle is iron with energy log10(E/GeV) = 6.1.

    图 1  能量为log10(E/GeV) = 5.1, 原初粒子为质子(黑色)和铁核(红色)在EAS中次级成分的种类和个数

    Figure 1.  Type and counts of secondary components in the EAS, the primary particles are proton (black) and iron (red). Energy of the primary particle is log10(E/GeV) = 5.1.

    图 2  不同原初粒子在EAS过程中产生的次级成分的横向分布 (a) 能量log10(E/GeV) = 5.1, 原初粒子为质子; (b) 能量log10(E/GeV) = 6.9, 原初粒子为铁核

    Figure 2.  Lateral distribution of secondary components produced by different primary particles during EAS: (a) Primary particle is proton with energy log10(E/GeV) = 5.1; (b) primary particle is iron with energy log10(E/GeV) = 6.9.

    图 3  不同原初粒子在EAS过程中产生的次级成分的数量在探测平面的分布 (a) 能量log10(E/GeV) = 5.1, 原初粒子为质子; (b) 能量log10(E/GeV) = 6.9, 原初粒子为铁核

    Figure 3.  Distribution of the number of secondary components produced by different primary particles during EAS in the detection plane: (a) Primary particle is proton with energy log10(E/GeV) = 5.1; (b) primary particle is iron with energy log10(E/GeV) = 6.9.

    图 4  次级粒子中伽马射线(a)和电子(b)的拟合参数$ s, \varDelta$的相关性 (原初粒子为质子和铁核, 蓝色虚线为拟合曲线)

    Figure 4.  Dependence between parameters $ s $ and $\varDelta $ in gamma (a) and electron (b) lateral distribution fitting (Shower is induced by proton and iron respectively, and the blue dotted line is the fitting curve).

    图 5  原初粒子在EAS中产生次级成分的横向分布拟合结果 (a), (b) 原初粒子为质子, 能量分别为log10(E/GeV) = 5.1 (a), log10(E/GeV) = 6.9 (b); (c), (d) 原初粒子为铁核, 能量分别为log10(E/GeV) = 5.1 (c), log10(E/GeV) = 6.9 (d). 绿色、黑色、蓝色、粉色点分别表示次级粒子中伽马射线、电子、缪子和中子, 最上端的红色五角星表示切伦科夫光, 对应颜色的实线为拟合曲线

    Figure 5.  Fitting of lateral distribution of secondary components: (a), (b) Primary particle is proton with log10(E/GeV) = 5.1 (a) and log10(E/GeV) = 6.9 (b); (c), (d) primary particle is iron with log10(E/GeV) = 5.1 (c) and log10(E/GeV) = 6.9 (d). The green, black, blue, and pink points represent gamma, electron, muon, and neutron respectively, the red stars at the top represent Cherenkov light. The solid lines with the same color are the fitted function.

    图 6  原初粒子分别为质子(a)和铁核(b)在EAS中产生的不同次级粒子个数的统计值N与拟合值$ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}} $之间的偏差,

    Figure 6.  Deviation between counted value N and fitted value $ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}} $ for different secondary particles. Shower is induced by proton (a) and iron (b).

    图 9  原初粒子为不同能量的铁核产生的次级电子的粒子数密度的展宽百分比随离簇射轴垂直距离的变化

    Figure 9.  Resolution in percentage (sigma/mean) of the particle number density of secondary electrons varies with perpendicular distance to the shower axis. The secondary electrons are induced by iron with different energies.

    图 11  原初成分为铁核, 分别用横向分布拟合的${N}_{\rm{s}\rm{i}\rm{z}\rm{e}}$, $ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}2} $$ \rho $进行能量重建的精度. 次级粒子分别为电子(a)、伽马(b)、缪子(c)和中子(d); $ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}2} $表示修正之后的$ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}} $

    Figure 11.  Energy resolution reconstructed by $ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}} $, $ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}2} $, and $ \rho , $ respectively. Shower is induced by iron. The secondary particles are electron (a), gamma (b), muon (c) and neutron (d), respectively; $ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}2} $ indicates the amended $ {N}_{\rm{s}\rm{i}\rm{z}\rm{e}} $.

    图 10  (a) 原初粒子铁核在能量log10(E/GeV) = 5.1时, 横向分布拟合的${\rm{ln}}({N}_{\rm{s}\rm{i}\rm{z}\rm{e}}^{\rm{e}})$$ {s}_{\rm{e}} $的关系 (红色实线为拟合线); (b) 用图(a)红色实线对$ {\rm{ln}}({N}_{\rm{s}\rm{i}\rm{z}\rm{e}}^{\rm{e}}) $进行修正, 修正前后的$ {\rm{ln}}({N}_{\rm{s}\rm{i}\rm{z}\rm{e}}^{\rm{e}}) $分布对比(图(b)插图中χ2/ndf可表征拟合好坏, χ2表征模型与数据点的差异, ndf指拟合的自由度, 即数据点个数减去模型的自由参数数量)

    Figure 10.  Distribution of $ {\rm{ln}}({N}_{\rm{s}\rm{i}\rm{z}\rm{e}}^{\rm{e}}) $ vs. se from fitted lateral distribution function for iron with energy log10(E/GeV) = 5.1 (Red solid line is a linear fitting); (b) comparison between corrected and uncorrected $ {\rm{ln}}({N}_{\rm{s}\rm{i}\rm{z}\rm{e}}^{\rm{e}}) $, and $ {\rm{ln}}({N}_{\rm{s}\rm{i}\rm{z}\rm{e}}^{\rm{e}}) $ corrected with the red solid line in panel (a) (In the panel (b), χ2/ndf can represent the good or bad fit, χ2 represents the difference between the model and the data point, ndf refers to the degree of freedom of fitting, that is the number of data points minus the number of free parameters of the model).

    图 12  原初粒子为铁核时, 距离芯位不同垂直距离$ r $处的切伦科夫光子数$ {N}^{\rm{C}} $分布的展宽百分比随原初粒子能量的变化关系

    Figure 12.  Resolution in percentage (sigma/mean) of Cherenkov photon number NC varies with the energy of the primary particle at different vertical distance r from the core site. Shower is induced by iron.

    图 13  不同次级成分的能量重建精度随原初粒子能量的变化关系, 原初粒子分别为质子(a), 氦核(b), 碳氮氧(c), 镁铝硅(d), 铁核(e) (彩色线表示不同的次级粒子)

    Figure 13.  Energy resolution from different secondary components vs. primary particle energy. The primary particles are proton (a), helium (b), CNO (c), MgAlSi (d), iron (e) (Colored lines indicate different secondary type).

    图 14  对于不同的能量的原初粒子质子和铁核, ρs的关系 (a) ${\rho }_{\rm{e}} \text{ vs. } {s}_{\rm{e}}$; (b) ${\rho }_{\rm{\gamma }} \text{ vs. } {s}_{\rm{\gamma }}$; (c) ${\rho }_{\text{μ}} \text{ vs. } {s}_{\text{μ}}$; (d) ${\rho }_{\rm{n}} \text{ vs. } {r}_{0}^{\rm{n}} $

    Figure 14.  Distribution of ρ vs. s when shower is induced by proton and iron respectively with different energies: (a) ${\rho }_{\rm{e}} \text{ vs. } {s}_{\rm{e}}$; (b)${\rho }_{\rm{\gamma }} \text{ vs. } {s}_{\rm{\gamma }}$; (c) ${\rho }_{\text{μ}} \text{ vs. } {s}_{{\text{μ}}}$; (d) ${\rho }_{\rm{n}} \text{ vs. } {r}_{0}^{\rm{n}} $.

    图 15  原初粒子为质子和铁核的参数 (a) $ {s}_{\rm{e}} $, (b) $ {s}_{\rm{\gamma }} $, (c) $ {\rho }_{{\text{μ}}} $, (d) $ {\rho }_{\rm{n}} $分布的对比(原初粒子能量均为log10(E/GeV) = 5.1)

    Figure 15.  Comparison of the distribution of (a) $ {s}_{\rm{e}} $, (b) $ {s}_{\rm{\gamma }} $, (c) $ {\rho }_{{\text{μ}}} $, (d) $ {\rho }_{\rm{n}} $between proton and iron with log10(E/GeV) = 5.1.

    图 16  原初粒子为质子和铁核的参数 (a) $ {s}_{\rm{e}} $, (b) $ {s}_{\rm{\gamma }} $, (c) ${\rho }_{\text{μ}}$, (d) $ {\rho }_{\rm{n}} $分布的对比(原初粒子能量均为log10(E/GeV) = 6.9

    Figure 16.  Comparison of the distribution of (a) $ {s}_{\rm{e}} $, (b) $ {s}_{\rm{\gamma }} $, (c) ${\rho }_{\text{μ}}$, (d) $ {\rho }_{\rm{n}} $ between proton and iron with log10(E/GeV) = 6.9.

  • [1]

    Prosin V V, Berezhnev S F, Budnev N M, et al. 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 756 94Google Scholar

    [2]

    Blümer J, Engel R, Hörandel J R 2009 Prog. Part. Nucl. Phys. 63 293Google Scholar

    [3]

    Rújula De A 2006 Nucl. Phys. B 151 23Google Scholar

    [4]

    Ahn H S, Allison P, Bagliesi M G 2009 Astrophys. J. 707 593Google Scholar

    [5]

    Barao F 2004 Nucl. Instruments Methods Phys. Res. Sect. A 535 134Google Scholar

    [6]

    Alemanno F, An Q 2021 Phys. Rev. Lett. 126 201102Google Scholar

    [7]

    An Q, Asfandiyarov R, Azzarello P 2019 Sci. Adv. 5 3793Google Scholar

    [8]

    Chang J, Ambrosi G, An Q 2017 Astropart. Phys. 95 6Google Scholar

    [9]

    Sparvoli R 2013 Nucl. Phys. B 239 115Google Scholar

    [10]

    Antoni T, Apel W D, Badea A F 2005 Astropart. Phys. 24 1Google Scholar

    [11]

    Bartoli B, Bernardini P, Bi X J, Cao Z 2017 Astropart. Phys. 93 46Google Scholar

    [12]

    Ma X H, Bi Y J, Cao Z 2022 Chin. Phys. C 46 030001Google Scholar

    [13]

    Abbasi R, Abdou Y, Ackermann M 2013 Nucl. Instrum. Methods. Phys. Res. Sect. A 700 188Google Scholar

    [14]

    Abbasi R U, Abe M, Abu-Zayyad T 2018 Astro. J. 865 74Google Scholar

    [15]

    Amenomori M, Bao Y W 2021 Phys. Rev. Lett. 127 031102Google Scholar

    [16]

    Apel W D, Arteaga-Velázquez J C 2011 Phys. Rev. Lett. 107 171104Google Scholar

    [17]

    Apel W D, Arteaga-Velázquez J C 2013 Phys. Rev. D 87 081101Google Scholar

    [18]

    Bartoli B, Bernardini P, Bi X J, Cao Z 2015 Phys. Rev. D 92 092005Google Scholar

    [19]

    Aartsen M G, Abbasi R 2020 Phys. Rev. D 102 122001Google Scholar

    [20]

    Aartsen M G, Ackermann M, Adams J 2019 Phys. Rev. D 100 082002Google Scholar

    [21]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers

    [22]

    Capdevielle J N, Cohen F 2005 J. Phys. G 31 507Google Scholar

    [23]

    Apel W D, Badea A F, Bekk K 2006 Astropart. Phys. 24 467Google Scholar

    [24]

    Feng Y L, Zhang Y, Chen T L 2019 Chin. Phys. C 43 075002Google Scholar

    [25]

    Alexandru C E, Alexandru J, Lavinia-Elena G 2019 Chin. Phys. C 43 083001Google Scholar

    [26]

    李骢 2018 博士学位论文 (北京: 中国科学院大学)

    Li C 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [27]

    Rivera-Rangel D, Arteaga-Velázquez J C 2021 37th Inter-national Cosmic Ray Conference (ICRC 2021) Online–Berlin, Germany July 1223, 2021 p3721

    [28]

    Aharonian F, An Q, Axikegu 2021 Chin. Phys. C 45 025002Google Scholar

    [29]

    Conceição R, Peres L 2021 Eur. Phys. J. C 81 1Google Scholar

    [30]

    Yin L Q, Zhang S S, Cao Z, Bi B Y 2019 Chin. Phys. C 43 075001Google Scholar

    [31]

    Jin C, Chen S Z, He H H 2020 Chin. Phys. C 44 065002Google Scholar

  • [1] Xie Zhen, Li Jing-Xing, Zheng Hua, Zhang Wen-Chao, Zhu Li-Lin, Liu Xing-Quan, Tan Zhi-Guang, Zhou Dai-Mei, Bonasera Aldo. Midrapidity average transverse momentum of identified charged particles in high-energy heavy-ion collisions. Acta Physica Sinica, 2024, 73(18): 181201. doi: 10.7498/aps.73.20240905
    [2] Axikegu, Zhou Xun-Xiu, Zhang Yun-Feng. Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory. Acta Physica Sinica, 2024, 73(12): 129201. doi: 10.7498/aps.73.20240341
    [3] Zhu Feng-Rong, Liu Jing, Xia Jun-Ji, Zhang Feng, Liu Hu. Study of atmospheric depth profiles at large high altitude air shower observatory using MSISE-90 model. Acta Physica Sinica, 2024, 73(16): 169201. doi: 10.7498/aps.73.20240679
    [4] Li Yu-Peng, Tang Xiu-Zhang, Chen Xin-Nan, Gao Chun-Yu, Chen Yan-Nan, Fan Cheng-Jun, Lü Jian-You. Experimental study on material discrimination based on muon discrete energy. Acta Physica Sinica, 2023, 72(2): 029501. doi: 10.7498/aps.72.20221645
    [5] Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng. Time of flight detector for charged particle identification based on circular electron-positron collider. Acta Physica Sinica, 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [6] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [7] Zhang Yun-Feng, Jia Huan-Yu, Wang Hui. Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72). Acta Physica Sinica, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662
    [8] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [9] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [10] Ma Ge, Hu Yue-Ming, Gao Hong-Xia, Li Zhi-Fu, Guo Qi-Wei. Physical total energy based objective function model for sparse reconstruction. Acta Physica Sinica, 2015, 64(20): 204202. doi: 10.7498/aps.64.204202
    [11] Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China). Acta Physica Sinica, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [12] Lü Qi-Wen, Zheng Yang-Heng, Tai Cai-Xing, Liu Fu-Hu, Cai Xiao, Fang Jian, Gao Long, Ge Yong-Shuai, Liu Ying-Biao, Sun Li-Jun, Sun Xi-Lei, Niu Shun-Li, Wang Zhi-Gang, Xie Yu-Guang, Xue Zhen, Yu bo-Xiang, Zhang Ai-Wu, Hu Tao, Lü Jun-Guang. The study of time-resolved measurement using ICCD positioning cosmic rays. Acta Physica Sinica, 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [13] Wang Jun-Fang, Qie Xiu-Shu, Lu Hong, Zhang Ji-Long, Yu Xiao-Xia, Shi Feng. Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Physica Sinica, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [14] Wu Ya-Bo, Lü Jian-Bo, Li Song, Yang Xiu-Yi. The evolution of the reconstructing five-dimensional cosmological model with a big bounce. Acta Physica Sinica, 2008, 57(4): 2621-2626. doi: 10.7498/aps.57.2621
    [15] Le Gui-Ming, Han Yan-Ben. Analysis of 1991 March 24 CME’s structure using galactic cosmic rays’ data. Acta Physica Sinica, 2005, 54(1): 467-470. doi: 10.7498/aps.54.467
    [16] SUN LUO-RUI. A STUDY OF THE ARRIVAL DIRECTION OF COSMIC RAYS WITH AVERAGE ENERGY ABOUT 2×1015 eV. Acta Physica Sinica, 1985, 34(2): 196-204. doi: 10.7498/aps.34.196
    [17] KUANG HAO-HWAI, LI RU-BAI, TAN YUE-HEN, LIU YUNG-YUIH. ANGULAR DISTRIBUTION OF NUCLEAR INTERACTIONS OF HIGH ENERGY COSMIC RAY PARTICLES WITH PARAFFIN. Acta Physica Sinica, 1965, 21(5): 976-982. doi: 10.7498/aps.21.976
    [18] WANG SHIH-WEI, KUANG HAO-HWAI, YUAN YU-KUEI. NUCLEAR INTERACTIONS OF COSMIC RAY HIGH ENERGY PARTICLES WITH LIQUID SCINTILLATOR. Acta Physica Sinica, 1963, 19(4): 205-214. doi: 10.7498/aps.19.205
    [19] W.Y.CHANG. JETS INDUCED IN EMULSIONS AND CLOUD CHAMBERS BY COSMIC RAY PARTICLES OF ENERGY(1011-1014eV). Acta Physica Sinica, 1961, 17(8): 9-33. doi: 10.7498/aps.17.9
    [20] . Acta Physica Sinica, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
Metrics
  • Abstract views:  4272
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2022
  • Accepted Date:  18 September 2022
  • Available Online:  08 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回