Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of atmospheric depth profiles at large high altitude air shower observatory using MSISE-90 model

Zhu Feng-Rong Liu Jing Xia Jun-Ji Zhang Feng Liu Hu

Citation:

Study of atmospheric depth profiles at large high altitude air shower observatory using MSISE-90 model

Zhu Feng-Rong, Liu Jing, Xia Jun-Ji, Zhang Feng, Liu Hu
PDF
HTML
Get Citation
  • High altitude cosmic ray observatory (LHAASO) is located at Haizi Mountain in Daocheng county, Sichuan province, China. Its wide field of view Cherenkov telescope array (WFCTA) is primarily used to study cosmic rays through observing the Cherenkov light signals produced during extensive air showers. Calibration, simulation, and reconstruction of WFCTA are all related to atmospheric depth. The atmospheric depth model currently used is the US standard atmosphere depth profile model. In this study, the US standard atmosphere depth profile model is compared with the atmospheric depth profile recorded by the infrared radiometer SABER carried by the satellite TIMED at LHAASO from 14 km to 50 km, and also with the atmospheric depth recorded by the ground meteorological station at LHAASO. The atmospheric depth obtained from the US standard atmosphere model is consistently smaller. The MSISE-90 atmospheric model describes the neutral temperature and density from the Earth's surface to the thermosphere. Further research shows good consistency between the MSISE-90 atmospheric model and the atmospheric depth recorded by TIMED/SABER and the ground standard meteorological station at LHAASO. According to the MSISE-90 atmospheric model, the average atmospheric depth profile at LHAASO is lowest in January, followed sequentially by February, March, April, November, and December, which are also the optimal observation months for WFCTA operation. The atmospheric boundary layer is highest in April, with the diurnal variation of atmospheric depth being about 2%. Using the functional form of the US standard atmosphere odel, the monthly atmospheric depth profile of the LHAASO site is obtained by fitting an atmospheric depth profile of 4.4 to 100 km per month. And the comparison between the lateral distribution of the Cherenkov photons produced by 100 TeV cosmic-ray protons incident at a zenith angle of 30° in the MSISE-90 atmospheric model and that in the US standard atmosphere model shows that their maximum difference reaches about 20%.
      Corresponding author: Zhu Feng-Rong, zhufr@home.swjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0404201).
    [1]

    He H H 2018 Radiation Detection Technology and Methods 2 1Google Scholar

    [2]

    曹臻, 陈明君, 陈松战, 胡红波, 刘成, 刘烨, 马玲玲, 马欣华, 盛祥东, 吴含荣, 肖刚, 姚志国, 尹丽巧, 查敏, 张寿山 2019 天文学报 60 3Google Scholar

    Cao Z, Chen M J, Chen S Z, Hu H B, Liu C, Liu Y, Ma L L, Ma X H, Sheng X D, Wu H R, Xiao G, Yao Z G, Yin L Q, Zha M, Zhang S S 2019 Acta Astronomica Sinica 60 3Google Scholar

    [3]

    LHAASO Collaboration 2021 Science 373 425Google Scholar

    [4]

    LHAASO Collaboration 2021 Nature 594 33Google Scholar

    [5]

    LHAASO Collaboration 2022 Nuclear Instruments and Methods in Physics Research A 1021 165824Google Scholar

    [6]

    LHAASO Collaboration 2021 Eur. Phys. J. C 81 657Google Scholar

    [7]

    Xie N, Liu H, Hu Y, Long W J, Jia H Y, Zhu F R, Chen Q H 2019 36th International Cosmic Ray Conference (ICRC2019), Madison, USA, July 24–August 1, 2019 498

    [8]

    Sun Q N 2021 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, July 12–23, 2021 272

    [9]

    Chen L, Li X, Ge L S, Liu H, Sun Q N, Wang Y, Xia J J, Zhu F R, Zhang Y 2021 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, July 12–23, 2021 269

    [10]

    李新, 陈龙, 耿利斯, 刘虎, 孙秦宁, 王阳, 夏君集, 祝凤荣, 张勇 2022 天文研究与技术 19 244Google Scholar

    Li X, Chen L, Geng L S, Liu H, Sun Q N, Wang Y, Xia J J, Zhu F R, Zhang Y 2022 Astronomical Research&Technology 19 244Google Scholar

    [11]

    Sun Q N, Jin M, Xia J J, Liu J, Min Z, Zhu F R, Chen L, Wang Y, Liu Y, Zhang Y 2023 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, July 26–August 3, 2023 498

    [12]

    Sun Q N, Wang Y, Chen L, Zhang Y, Zhu F R 2023 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, July 26–August 3, 2023 496

    [13]

    Sun Q N, Min Z, Liu H, Zhu F R, Zhang S S, Long C, Wang Y 2023 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, July 26–August 3, 2023 494

    [14]

    柳靖, 唐晓凡, 夏君集, 祝凤荣 2024 高原山地气象研究 44 1674

    Liu J, Tang X F, Xia J J, Zhu F R 2024 Plateau and Mountain Meteorology Research 44 1674

    [15]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 Corsika: A monte carlo code to simulate extensive air showers (Wissenschaftliche Berichte, FZKA-6019) pp1–54

    [16]

    National Geophysical Data Center 1976 Planetary and Space Science 40 553Google Scholar

    [17]

    Wilczyńska B, Góra D, Homola P, Pe¸kala J, Risse M, Wilczyński H 2006 Astropart. Phys. 25 106Google Scholar

    [18]

    Keilhauer B, Will M, Pierre Auger Collaboration 2012 Eur. Phys. J. Plus 127 96Google Scholar

    [19]

    Pierre Auger Collaboration 2012 Astropart. Phys. 35 591Google Scholar

    [20]

    HiRes Collaboration 2001 Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, August 7–15, 2001 653

    [21]

    HESS Collaboration 2003 Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31–August 7, 2003 2879

    [22]

    The Veritas Collaboration 2008 VERITAS Collaboration Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July, 2008

    [23]

    The Telescope Array Collaboration 2001 27th International Cosmic Ray Conference (ICRC2001), Hamburg, Germany, August 7–15, 2001 663

    [24]

    Schmuckermaier F, Gaug M, Fruck C, Moralejo A, Hahn A, Dominis Prester D, Dorner D, Font L, Mićanović S, Mirzoyan R, Paneque D, Pavletić L, Sitarek J, Will M 2023 Astron. Astrophys. 673 25Google Scholar

    [25]

    Hedin A, Res J G 1991 J. Geophys. Res. 96 1159Google Scholar

    [26]

    NASA CCMC MSIS Vitmo Model [2024-03-27]

    [27]

    程旋, 肖存英, 胡雄, 杨钧烽 2018 中国科学: 物理学 力学 天文学 48 79

    Cheng X, Xiao C Y, Hu X, Yang J F 2018 SCIENTIA SINICA Physica, Mechanica & Astronomica 48 79

    [28]

    宫晓艳, 胡雄, 吴小成, 肖存英 2013 地球物理学报 56 2152

    Gong X Y, Hu X, Wu X C, Xiao C Y 2013 Chin. J. Geophy. 56 2152

    [29]

    Dai Y R, Pan W L, Qiao S, Hu X, Yan Z A, Ban C 2020 Chinese Journal of Space Science 40 207Google Scholar

    [30]

    Hedin A E, Salah J E, Evans J V, Reber C A, Newton G P, Spencer N W, Kayser D C, Alcayde D, Bauer P, Cogger L, McClure J P 1977 J. Geophys. Res. 82 2139Google Scholar

    [31]

    Hedin A E 1987 J. Geophys. Res. 92 4649Google Scholar

    [32]

    Picone J M, Hedin A E, Drob D P, Aikin A C 2002 J. Geophys. Res. 107 1468Google Scholar

    [33]

    Labitzke K, Barnett J J, Edwards B 1985 Handbook MAP 16

    [34]

    Fleming E L, Chandra S, Barnett J, Corney M 1990 Adv. Space Res. 10 11

    [35]

    张丰, 刘虎, 祝凤荣 2022 物理学报 71 472

    Zhang F, Liu H, Zhu F R 2022 Acta Phys. Sin. 71 472

    [36]

    Liu J R, Wu H X, Liu Q, Ji Y J, Xu R, Zhang F, Liu H 2024 Universe 10 100Google Scholar

  • 图 1  LHAASO上空14—50 km垂直大气深度廓线. 黑点表示由美国标准大气模型得到, 红点表示由SABER得到

    Figure 1.  Vertical atmospheric depth profiles over LHAASO by U.S. standard atmospheric model and SABER as a function of altitude

    图 2  LHAASO地面处大气深度的变化, 蓝色是美国标准大气模型的计算结果, 红色是地面标准气象站的观测数据

    Figure 2.  Variation of surface atmospheric depth at LHAASO, the blue is the calculation of the standard atmospheric model of the United States, and the red is the observation data of the standard weather station on the ground.

    图 3  SABER和MSISE-90模型在29天内得出的平均大气深度廓线的比较. y轴表示SABER的大气深度廓线减去与MSISE-90模型对应的大气深度的差值

    Figure 3.  Comparison of the mean atmospheric depth profile derived from SABER and MSISE-90 model in 29 days. The y-axis represents for the difference of the mean atmospheric depth profile from SABER minus that from MSISE-90 model

    图 4  MSISE-90 模型的大气深度减去气象站数据的大气深度的分布, MSISE-90 的大气深度与地面标准气象站的记录非常一致, 平均值为$ (3.752\pm0.036 )\, \text{ g/cm}^2 $, 可能是两个大气深度之间的系统性差异

    Figure 4.  Distribution of atmospheric depth with MSISE-90 model minus weather station data. The atmospheric depth of MSISE-90 is very consistent with records from standard weather stations on the ground, with an average of (3.752 ± 0.036) g·cm–2. It could be a systematic difference between the two atmospheric depths.

    图 5  2018年4月份每天0点时刻4.4—50 km的垂直大气深度廓线

    Figure 5.  Vertical atmospheric depth profile from 4.4 km through 50 km at zero o’clock each day in April 2018

    图 6  2018年每月的相对于年均值的垂直大气深度廓线

    Figure 6.  Distribution of monthly mean atmospheric depth minus the annual average

    图 7  每月大气深度模型与美国标准大气模型产生的切伦科夫光的横向分布的比值随Rp的变化. y轴表示切伦科夫光密度比值, x轴表示到簇射轴的距离

    Figure 7.  Variation of Cherenkov light ratio with Rp in monthly atmospheric depth models versus US standard atmosphere. The y-axis represents the ratio of Cherenkov light density, and the x-axis represents the distance to the shower axis.

    表 1  大气深度模型参数

    Table 1.  Atmospheric depth model parameters

    Month Layer i Altitude h/km ai/(g·cm–2) bi/(g·cm–2) ci/(g·cm–2)
    Jan14.4—10–88.676641153.38932885318.24144
    210—400.15031368.33236635083.57589
    340—700.00097594.27741759999.94129
    470—100–0.000861907.62483667666.97913
    Feb14.4—10–87.391771154.47929881758.5079
    210—400.156091367.33681635285.9599
    340—700.00027576.34076764858.0621
    470—100–0.000852045.36876663026.919
    Mar14.4—10–87.848311151.6271885628.7299
    210—400.113151369.10268635555.228
    340—70–0.00049553.3669771529.8036
    470—100–0.000912209.83224658731.9146
    Apr14.4—10–90.256221145.51995897003.8093
    210—400.062341373.1308635903.6963
    340—70–0.00116539.40289776888.0464
    470—100–0.000972423.60087654760.7167
    May14.4—10–94.010041143.16428911761.1959
    210—400.035961381.07511636947.2602
    340—70–0.00132549.94468776854.1294
    470—100–0.001062661.49827651353.7108
    Jun14.4—10–97.914331146.13178925652.5235
    210—400.018161390.15178639198.5601
    340—70–0.00087583.28466771416.4869
    470—100–0.001142874.15677648179.0992
    Jul14.4—10–100.065621148.64061933675.7634
    210—40–0.024231392.20555641946.5067
    340—70–0.00005618.18009764300.351
    470—100–0.001112927.94379646356.8679
    Aug14.4—10–100.353861151.17543934589.3083
    210—40–0.096511391.26844643717.7458
    340—700.00089636.09755759237.935
    470—100–0.001062753.18923647878.0245
    Sep14.4—10–98.988871149.90531929337.2904
    210—40–0.150621386.23148643237.0362
    340—700.0016629.96089757639.8883
    470—100–0.000972427.85445653170.7765
    Oct14.4—10–96.775541147.98637919739.3653
    210—40–0.134851381.02577640744.2671
    340—700.0019614.52746757915.0523
    470—100–0.000912107.53654660753.9717
    Nov14.4—10–94.083871147.66351907591.9124
    210—40–0.044651376.11079637729.8644
    340—70–0.00183604.50776758089.8866
    470—100–0.000881903.76056667277.3079
    Dec14.4—10–91.252241150.55845895114.7529
    210—400.072011372.32941635695.0018
    340—700.0015601.61656758134.5887
    470—100–0.000891844.46114669845.4268
    DownLoad: CSV
  • [1]

    He H H 2018 Radiation Detection Technology and Methods 2 1Google Scholar

    [2]

    曹臻, 陈明君, 陈松战, 胡红波, 刘成, 刘烨, 马玲玲, 马欣华, 盛祥东, 吴含荣, 肖刚, 姚志国, 尹丽巧, 查敏, 张寿山 2019 天文学报 60 3Google Scholar

    Cao Z, Chen M J, Chen S Z, Hu H B, Liu C, Liu Y, Ma L L, Ma X H, Sheng X D, Wu H R, Xiao G, Yao Z G, Yin L Q, Zha M, Zhang S S 2019 Acta Astronomica Sinica 60 3Google Scholar

    [3]

    LHAASO Collaboration 2021 Science 373 425Google Scholar

    [4]

    LHAASO Collaboration 2021 Nature 594 33Google Scholar

    [5]

    LHAASO Collaboration 2022 Nuclear Instruments and Methods in Physics Research A 1021 165824Google Scholar

    [6]

    LHAASO Collaboration 2021 Eur. Phys. J. C 81 657Google Scholar

    [7]

    Xie N, Liu H, Hu Y, Long W J, Jia H Y, Zhu F R, Chen Q H 2019 36th International Cosmic Ray Conference (ICRC2019), Madison, USA, July 24–August 1, 2019 498

    [8]

    Sun Q N 2021 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, July 12–23, 2021 272

    [9]

    Chen L, Li X, Ge L S, Liu H, Sun Q N, Wang Y, Xia J J, Zhu F R, Zhang Y 2021 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, July 12–23, 2021 269

    [10]

    李新, 陈龙, 耿利斯, 刘虎, 孙秦宁, 王阳, 夏君集, 祝凤荣, 张勇 2022 天文研究与技术 19 244Google Scholar

    Li X, Chen L, Geng L S, Liu H, Sun Q N, Wang Y, Xia J J, Zhu F R, Zhang Y 2022 Astronomical Research&Technology 19 244Google Scholar

    [11]

    Sun Q N, Jin M, Xia J J, Liu J, Min Z, Zhu F R, Chen L, Wang Y, Liu Y, Zhang Y 2023 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, July 26–August 3, 2023 498

    [12]

    Sun Q N, Wang Y, Chen L, Zhang Y, Zhu F R 2023 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, July 26–August 3, 2023 496

    [13]

    Sun Q N, Min Z, Liu H, Zhu F R, Zhang S S, Long C, Wang Y 2023 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, July 26–August 3, 2023 494

    [14]

    柳靖, 唐晓凡, 夏君集, 祝凤荣 2024 高原山地气象研究 44 1674

    Liu J, Tang X F, Xia J J, Zhu F R 2024 Plateau and Mountain Meteorology Research 44 1674

    [15]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 Corsika: A monte carlo code to simulate extensive air showers (Wissenschaftliche Berichte, FZKA-6019) pp1–54

    [16]

    National Geophysical Data Center 1976 Planetary and Space Science 40 553Google Scholar

    [17]

    Wilczyńska B, Góra D, Homola P, Pe¸kala J, Risse M, Wilczyński H 2006 Astropart. Phys. 25 106Google Scholar

    [18]

    Keilhauer B, Will M, Pierre Auger Collaboration 2012 Eur. Phys. J. Plus 127 96Google Scholar

    [19]

    Pierre Auger Collaboration 2012 Astropart. Phys. 35 591Google Scholar

    [20]

    HiRes Collaboration 2001 Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, August 7–15, 2001 653

    [21]

    HESS Collaboration 2003 Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31–August 7, 2003 2879

    [22]

    The Veritas Collaboration 2008 VERITAS Collaboration Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July, 2008

    [23]

    The Telescope Array Collaboration 2001 27th International Cosmic Ray Conference (ICRC2001), Hamburg, Germany, August 7–15, 2001 663

    [24]

    Schmuckermaier F, Gaug M, Fruck C, Moralejo A, Hahn A, Dominis Prester D, Dorner D, Font L, Mićanović S, Mirzoyan R, Paneque D, Pavletić L, Sitarek J, Will M 2023 Astron. Astrophys. 673 25Google Scholar

    [25]

    Hedin A, Res J G 1991 J. Geophys. Res. 96 1159Google Scholar

    [26]

    NASA CCMC MSIS Vitmo Model [2024-03-27]

    [27]

    程旋, 肖存英, 胡雄, 杨钧烽 2018 中国科学: 物理学 力学 天文学 48 79

    Cheng X, Xiao C Y, Hu X, Yang J F 2018 SCIENTIA SINICA Physica, Mechanica & Astronomica 48 79

    [28]

    宫晓艳, 胡雄, 吴小成, 肖存英 2013 地球物理学报 56 2152

    Gong X Y, Hu X, Wu X C, Xiao C Y 2013 Chin. J. Geophy. 56 2152

    [29]

    Dai Y R, Pan W L, Qiao S, Hu X, Yan Z A, Ban C 2020 Chinese Journal of Space Science 40 207Google Scholar

    [30]

    Hedin A E, Salah J E, Evans J V, Reber C A, Newton G P, Spencer N W, Kayser D C, Alcayde D, Bauer P, Cogger L, McClure J P 1977 J. Geophys. Res. 82 2139Google Scholar

    [31]

    Hedin A E 1987 J. Geophys. Res. 92 4649Google Scholar

    [32]

    Picone J M, Hedin A E, Drob D P, Aikin A C 2002 J. Geophys. Res. 107 1468Google Scholar

    [33]

    Labitzke K, Barnett J J, Edwards B 1985 Handbook MAP 16

    [34]

    Fleming E L, Chandra S, Barnett J, Corney M 1990 Adv. Space Res. 10 11

    [35]

    张丰, 刘虎, 祝凤荣 2022 物理学报 71 472

    Zhang F, Liu H, Zhu F R 2022 Acta Phys. Sin. 71 472

    [36]

    Liu J R, Wu H X, Liu Q, Ji Y J, Xu R, Zhang F, Liu H 2024 Universe 10 100Google Scholar

  • [1] Axikegu, Zhou Xun-Xiu, Zhang Yun-Feng. Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory. Acta Physica Sinica, 2024, 73(12): 129201. doi: 10.7498/aps.73.20240341
    [2] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [3] Wu Xiao-Qing, Yang Qi-Ke, Huang Hong-Hua, Qing Chun, Hu Xiao-Dan, Wang Ying-Jian. Study of ${\boldsymbol C_{\boldsymbol n}^{\boldsymbol 2}}$ profile model by atmospheric optical turbulence model. Acta Physica Sinica, 2023, 72(6): 069201. doi: 10.7498/aps.72.20221985
    [4] Hu Yun-You, Xu Liang, Shen Xian-Chun, Shu Sheng-Quan, Xu Huan-Yao, Deng Ya-Song, Xu Han-Yang, Liu Jian-Guo, Liu Wen-Qing. Inversion method of target gas cloud transmittance based on atmospheric profile synthesis background. Acta Physica Sinica, 2023, 72(3): 033201. doi: 10.7498/aps.72.20221670
    [5] Zhang Feng, Liu Hu, Zhu Feng-Rong. Properties of secondary components in extensive air shower of cosmic rays in knee energy region. Acta Physica Sinica, 2022, 71(24): 249601. doi: 10.7498/aps.71.20221556
    [6] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [7] Xu Zi-Qiang, Wu Xiao-Qing, Xu Man-Man, Bi Cui-Cui, Han Yong, Shao Shi-Yong. Estimation of ${\boldsymbol{C_n^2}}$ profile of troposphere over the sea. Acta Physica Sinica, 2021, 70(24): 244204. doi: 10.7498/aps.70.20211201
    [8] Xue Zheng-Yue, Li Jun, Liu Xiao-Hai, Wang Jing-Jing, Gao Xiao-Ming, Tan Tu. Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection. Acta Physica Sinica, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [9] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [10] Bi Yan-Meng, Liao Mi, Zhang Peng, Ma Gang. 1DVAR retrieval method for GPS radio occultation measurements of atmospheric temperature and humidity profiles. Acta Physica Sinica, 2013, 62(15): 159301. doi: 10.7498/aps.62.159301
    [11] Lü Qi-Wen, Zheng Yang-Heng, Tai Cai-Xing, Liu Fu-Hu, Cai Xiao, Fang Jian, Gao Long, Ge Yong-Shuai, Liu Ying-Biao, Sun Li-Jun, Sun Xi-Lei, Niu Shun-Li, Wang Zhi-Gang, Xie Yu-Guang, Xue Zhen, Yu bo-Xiang, Zhang Ai-Wu, Hu Tao, Lü Jun-Guang. The study of time-resolved measurement using ICCD positioning cosmic rays. Acta Physica Sinica, 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [12] Cheng Hu-Hua, Zhong Zhong, Cen Jin, Deng Shao-Ge. A new method of obtaining perturbation vertical profiles in estimating the atmosphere gravity wave parameters. Acta Physica Sinica, 2012, 61(18): 189201. doi: 10.7498/aps.61.189201
    [13] He Ming-Yuan, Du Hua-Dong, Long Zhi-Yong, Huang Si-Xun. Selection of regularization parameters using an atmospheric retrievable index in a retrieval of atmospheric profile. Acta Physica Sinica, 2012, 61(2): 024205. doi: 10.7498/aps.61.024205
    [14] Zhao Xiao-Feng, Huang Si-Xun. Remote sensing of atmospheric refractivity from field measurements of vertical receiver array. Acta Physica Sinica, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [15] Le Gui-Ming, Han Yan-Ben. Analysis of 1991 March 24 CME’s structure using galactic cosmic rays’ data. Acta Physica Sinica, 2005, 54(1): 467-470. doi: 10.7498/aps.54.467
    [16] Zhou Bin, Hao Nan, Chen Li-Min. A study on the effect of Fraunhofer structure on the measurement of atmospheric pollutants with differential optical absorption spectroscopy. Acta Physica Sinica, 2005, 54(9): 4445-4450. doi: 10.7498/aps.54.4445
    [17] ZHANG YI-BO. STUDY OF RELATIONSHIP BETWEEN SPONTANEOUS RADIATION AND STIMULATED RADIATION IN CERENKOV FREE ELECTRON LASERS. Acta Physica Sinica, 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
    [18] SUN LUO-RUI. A STUDY OF THE ARRIVAL DIRECTION OF COSMIC RAYS WITH AVERAGE ENERGY ABOUT 2×1015 eV. Acta Physica Sinica, 1985, 34(2): 196-204. doi: 10.7498/aps.34.196
    [19] W.Y.CHANG. JETS INDUCED IN EMULSIONS AND CLOUD CHAMBERS BY COSMIC RAY PARTICLES OF ENERGY(1011-1014eV). Acta Physica Sinica, 1961, 17(8): 9-33. doi: 10.7498/aps.17.9
    [20] . Acta Physica Sinica, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
Metrics
  • Abstract views:  1696
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2024
  • Accepted Date:  24 June 2024
  • Available Online:  13 July 2024
  • Published Online:  20 August 2024

/

返回文章
返回