-
In the frame work of multi-channel quantum defect theory (MQDT), the energy levels of three even Rydberg series 4f13(2F7/2o)6s(7/2, 1/2)4onp3/2, 4f13(2F7/2o)6s(7/2, 1/2)3onp3/2 and 4f13(2F7/2o)6s(7/2, 1/2)3onp1/2 converging to 4f13(2F7/2o)6s(7/2, 1/2)4o or 4f13(2F7/2o)6s(7/2, 1/2)3o of thulium atom are calculated by relativistic multi-channel theory. Compared with the experimental data from National Institute of Standards and Technology (NIST), the theoretical result shows two different types of electron-correlation effects: 1)the interaction between two Rydberg series results in energy shifts for these Rydberg series; 2)an isolated perturbed state is embedded in the energy range of a Rydberg series and interacts with the whole series, and breaks the regularity of the Rydberg series, and quantum defects show a large jump around the perturbed state. More specifically, by comparing the present calculated quantum defects with the experimental data, we reassign two Rydberg series: 1)4f13(2F7/2o)6s(7/2, 1/2)4onp3/2 Rydberg series from NIST is reassigned as 4f13(2F7/2o)6s(7/2, 1/2)4onf5/2, J=(5/2)+, 4f13(2F7/2o)6s(7/2, 1/2)4onf5/2, J=(7/2)+ and/or 4f13(2F7/2o)6s(7/2, 1/2)4onp1/2, J=(9/2)+ Rydberg series, and the difference between experimental and calculated quantum defects is generally better than 0.1; 2)4f13(2F7/2o)6s(7/2, 1/2)3onp3/2 Rydberg series from NIST is reassigned as 4f13(2F7/2o)6s(7/2, 1/2)3onf7/2, J=(5/2)+, 4f13(2F7/2o)6s(7/2, 1/2)3onf7/2, J=(7/2)+ and/or 4f13(2F7/2o)6s(7/2, 1/2)3onf5/2, 7/2, J=(9/2)+ Rydberg series, and the difference between experimental and calculated quantum defects is generally better than 0.05. As for the 4f13(2F7/2o)6s(7/2, 1/2)3onp1/2 Rydberg series from NIST, we find there is a perturbed state at about 49900 cm-1, and assign the perturbed state as 4f13(3F4)6 d5/26s2, J=7/2 and the total angular momentum for the Rydberg series is J=7/2.
[1] Fano U 1961 Phys. Rev. 124 1866
[2] Bolle K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593
[3] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633
[4] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716
[5] Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543
[6] Jia F D, Zhong Z P, Sun W, Xue P, Xu X Y 2009 Phys. Rev. A 79 032505
[7] L S F, Li R, Jia F D, Li X K, Lassen J, Zhong Z P 2017 Chin. Phys. Lett. 34 073101
[8] Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhfer A, Yan H 2017 Phys. Rev. A 95 052501
[9] Lee C M, Lu K T 1973 Phys. Rev. A 8 1241
[10] Fano U 1970 Phys. Rev. A 2 353
[11] Seaton M J 1983 Rep. Prog. Phys. 46 167
[12] Greene C, Fano U, Strinati G 1979 Phys. Rev. A 19 1485
[13] Lee C M, Johnson W R 1980 Phys. Scr. A 21 409
[14] Li J M 1983 Acta Phys. Sin. 32 84 (in Chinese) [李家明 1983 物理学报 32 84]
[15] Li J M 1980 Acta Phys. Sin. 29 419 (in Chinese) [李家明 1980 物理学报 29 419]
[16] Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese) [颜君, 张培鸿, 仝晓民, 李家明 1996 物理学报 45 1978]
[17] Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334
[18] Zou Y, Tong X M, Li J M 1995 Acta Phys. Sin. 44 50 (in Chinese) [邹宇, 仝晓民, 李家明 1995 物理学报 44 50]
[19] Huang W, Zou Y, Tong X M, Li J M 1995 Phys. Rev. A 52 2770
[20] Li J M, Wu Y J, Pratt R H 1989 Phys. Rev. A 40 3036
[21] Xia D, Zhang S Z, Peng Y L, Li J M 2003 Chin. Phys. Lett. 20 56
[22] Lee C M 1974 Phys. Rev. A 10 584
[23] NIST Atomic Spectra Database (Ver. 5.5.6), Kramida A, Ralchenko Y, Reader J, NIST ASD Team https://physics.nist.gov/asd [2018-9-9]
[24] Martin W C, Zalubas R, Hagan L 1978 Nat. Stand. Ref. Data Ser. 60 422
[25] Sossah A M, Zhou H L, Manson S T 2008 Phys. Rev. A 78 053405
[26] Shi Y L, Dong C Z 2009 Acta Phys. Sin. 58 2350 (in Chinese) [师应龙, 董晨钟 2009 物理学报 58 2350]
[27] Libermann D A, Comer D T, Waber J T 1971 Comput. Phys. Commun. 2 107
-
[1] Fano U 1961 Phys. Rev. 124 1866
[2] Bolle K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593
[3] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633
[4] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716
[5] Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543
[6] Jia F D, Zhong Z P, Sun W, Xue P, Xu X Y 2009 Phys. Rev. A 79 032505
[7] L S F, Li R, Jia F D, Li X K, Lassen J, Zhong Z P 2017 Chin. Phys. Lett. 34 073101
[8] Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhfer A, Yan H 2017 Phys. Rev. A 95 052501
[9] Lee C M, Lu K T 1973 Phys. Rev. A 8 1241
[10] Fano U 1970 Phys. Rev. A 2 353
[11] Seaton M J 1983 Rep. Prog. Phys. 46 167
[12] Greene C, Fano U, Strinati G 1979 Phys. Rev. A 19 1485
[13] Lee C M, Johnson W R 1980 Phys. Scr. A 21 409
[14] Li J M 1983 Acta Phys. Sin. 32 84 (in Chinese) [李家明 1983 物理学报 32 84]
[15] Li J M 1980 Acta Phys. Sin. 29 419 (in Chinese) [李家明 1980 物理学报 29 419]
[16] Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese) [颜君, 张培鸿, 仝晓民, 李家明 1996 物理学报 45 1978]
[17] Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334
[18] Zou Y, Tong X M, Li J M 1995 Acta Phys. Sin. 44 50 (in Chinese) [邹宇, 仝晓民, 李家明 1995 物理学报 44 50]
[19] Huang W, Zou Y, Tong X M, Li J M 1995 Phys. Rev. A 52 2770
[20] Li J M, Wu Y J, Pratt R H 1989 Phys. Rev. A 40 3036
[21] Xia D, Zhang S Z, Peng Y L, Li J M 2003 Chin. Phys. Lett. 20 56
[22] Lee C M 1974 Phys. Rev. A 10 584
[23] NIST Atomic Spectra Database (Ver. 5.5.6), Kramida A, Ralchenko Y, Reader J, NIST ASD Team https://physics.nist.gov/asd [2018-9-9]
[24] Martin W C, Zalubas R, Hagan L 1978 Nat. Stand. Ref. Data Ser. 60 422
[25] Sossah A M, Zhou H L, Manson S T 2008 Phys. Rev. A 78 053405
[26] Shi Y L, Dong C Z 2009 Acta Phys. Sin. 58 2350 (in Chinese) [师应龙, 董晨钟 2009 物理学报 58 2350]
[27] Libermann D A, Comer D T, Waber J T 1971 Comput. Phys. Commun. 2 107
Catalog
Metrics
- Abstract views: 5767
- PDF Downloads: 86
- Cited By: 0