Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Biomedical microwave-induced thermoacoustic imaging

Wang Yu Zhang Hui-Min Qin Huan

Citation:

Biomedical microwave-induced thermoacoustic imaging

Wang Yu, Zhang Hui-Min, Qin Huan
PDF
HTML
Get Citation
  • Microwave thermoacoustic imaging (MTAI) is an exciting imaging technique rooted from the underlying principle of exploiting the distinct electrical properties of biological tissues. By using short-pulsed microwaves as a stimulation source and their interaction with the human body, MTAI has paved the way for revolutionary advancements in medical imaging. When microwaves are absorbed by polar molecules and ions within the tissues, an ingenious thermoelastic effect gives rise to ultrasound waves. These ultrasound waves, brimming with invaluable pathological and physiological insights, propagate outward, carrying the essence of the composition and functionality of biological tissue. Through a meticulous collection of ultrasound signals from all directions surrounding the tissue, it becomes possible to reconstruct intricate internal structures and visualize the tissue's functional dynamics. The MTAI excels in non-invasiveness, capable of delving several centimeters beneath the surface with a microscopic resolution on the order of micrometers. The magic lies in converting microwave energy into ultrasound waves, entering into the hidden depths of tissues without causing harm. This groundbreaking imaging modality unlocks a realm of possibilities for acquiring profound insights into the intricate structures and functionality of deep-seated tissues. Furthermore, the inherent polarization characteristics of microwaves empower MTAI to capture additional dimensions of information, unraveling the intricate polarization properties and illuminating a richer understanding of the tissue's complexity. The great potential of MTAI extends far and wide within the medicine field. It has made remarkable achievements in non-invasive imaging of brain structures, screening breast tumors, visualizing human arthritis, and detecting liver fat content. These accomplishments have laid a solid foundation, firmly establishing MTAI as a trailblazing medical imaging technique. The present study offers a comprehensive and in-depth exploration of the physical principles underpinning MTAI, the sophisticated system devices involved, and the recent groundbreaking research breakthroughs. Moreover, it delves into the exciting prospects and challenges that lie ahead in the future development of MTAI. As the technology continues to progress by leaps and bounds, MTAI is ready to break down barriers, and usher in a new era of unmatched imaging quality and performance. This, in turn, will open the floodgates for transformative innovations and applications in medical diagnosis and treatment. The anticipation is palpable as MTAI strives to make substantial contributions to the ever-developing medical imaging field, bestowing upon humanity more accurate, reliable, and life-enhancing diagnostic capabilities.
      Corresponding author: Qin Huan, qinghuan@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075066), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2023A1515010824), and the Science and Technology Program of Guangzhou, China (Grant No. 202201010718).
    [1]

    Ketcham R A, Carlson W D 2001 Comput. Geosci. 27 381Google Scholar

    [2]

    Bushong S C, Clarke G 2003 Magnetic Resonance Imaging: Physical and Biological Principles (Amsterdam: Elsevier Health Sciences) pp58–65

    [3]

    Bushberg J T, Boone J M 2011 The Essential Physics of Medical Imaging (Philadelphia: Lippincott Williams & Wilkins) pp171–202

    [4]

    Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A 2020 ACS Biomater. Sci. Eng. 6 4377Google Scholar

    [5]

    Chan V, Perlas A 2011 Atlas of Ultrasound-guided Procedures in Interventional Pain Management (New York: Springer) p13

    [6]

    Nguyen K C T, Le L H, Kaipatur N R, Zheng R, Lou E H, Major P W 2016 Ann. Biomed. Eng. 44 2874Google Scholar

    [7]

    Wang H, Liu N 2020 J. Med. Imaging Health Inf. 10 918Google Scholar

    [8]

    Xu M H, Ku G, Jin X, Wang L V, Fornage B D, Hunt K K 2005 The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics 5697 45

    [9]

    Behari J 2019 Radio Frequency and Microwave Effects on Biological Tissues (New York: CRC Press) pp63–82

    [10]

    Chen H, Tang X, Nie G, Wang Z, Hu J, Hu J, Qin H 2023 J. Innovative Opt. Health Sci. 16 2243002Google Scholar

    [11]

    Lin J C 2005 Advances in Electromagnetic Fields in Living Systems (Boston: Springer) p41

    [12]

    Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725

    [13]

    Rahpeima R, Soltani M, Kashkooli F M 2020 Comput. Methods Programs Biomed. 196 105606Google Scholar

    [14]

    Liu Q, Liang X, Li T, Chao W, Qi W Z, Jin T, Gong Y, Jiang H B, Xi L 2023 IEEE Trans. Med. Imaging 42 2425

    [15]

    Zhao Y, Shan T, Chi Z H, Jiang H B 2020 J. Xray Sci. Technol. 28 83

    [16]

    Ren M Y, Cheng Z W, Wu L H, et al. 2023 IEEE Trans. Biomed. Eng. 70 175Google Scholar

    [17]

    Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84Google Scholar

    [18]

    Vander Vorst A, Rosen A, Kotsuka Y 2006 RF/microwave Interaction With Biological Tissues (Hoboken: John Wiley & Sons) pp30–38

    [19]

    Schwan H P, Foster K R 1980 Proc. IEEE 68 104Google Scholar

    [20]

    Foster K R, Schwan H P 2019 CRC Handbook of Biological Effects of Electromagnetic Fields (Boca Raton: CRC press) pp27–76

    [21]

    Fiedler T M, Ladd M E, Bitz A K 2018 Neuroimage 168 33Google Scholar

    [22]

    Williams J M 2001 arXiv: 0102007 [physics.gen-ph

    [23]

    Bacon C, Guilliorit E, Hosten B, Chimenti D E 2001 J. Acoust. Soc. Am. 110 1398Google Scholar

    [24]

    Dagro A M, Wilkerson J W, Thomas T P, Kalinosky B T, Payne J A 2021 Sci. Adv. 7 eabd8405Google Scholar

    [25]

    Zhang X C, Xu J 2010 Introduction to THz Wave Photonics (Vol. 29) (New York: Springer) pp70–82

    [26]

    Drain L 2019 Laser Ultrasonics: Techniques and Applications (New York: Routledge) pp305–322

    [27]

    Paltauf G, Dyer P E 2003 Chem. Rev. 103 487Google Scholar

    [28]

    Harris C M, Piersol A G 2002 Harris’ Shock and Vibration Handbook (Vol. 5) (New York: McGraw-Hill) p21

    [29]

    Drebushchak V 2020 J. Therm. Anal. Calorim. 142 1097Google Scholar

    [30]

    Gao F, Zheng Q, Zheng Y J 2014 Med. Phys. 41 053302Google Scholar

    [31]

    Luo W L, Ji Z, Yang S H, Xing D 2018 Phys. Rev. Appl. 10 1728

    [32]

    Lou C G, Yang S H, Ji Z, Chen Q, Xing D 2012 Phys. Rev. Lett. 109 218101Google Scholar

    [33]

    Ji Z, Lou C G, Yang S H, Xing D 2012 Med. Phys. 39 6738Google Scholar

    [34]

    Yan J, Tao C J, Wu S Z 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, 17–18 January 2006 p1521

    [35]

    Lou C G, Nie L M, Xu D 2011 J. Appl. Phys. 110 083101Google Scholar

    [36]

    Ji Z, Ding W Z, Ye F H, Lou C G, Xing D 2015 Appl. Phys. Lett. 107 094104Google Scholar

    [37]

    Ji Z, Lou C G, Shi Y, Ding W Z, Yang S H, Xing D 2015 Appl. Phys. Lett. 107 839

    [38]

    Wang X, Bauer D R, Vollin J L, Manzi D G, Witte R S, Xin H 2012 IEEE Antennas Wirel. Propag. Lett. 11 1634Google Scholar

    [39]

    Sharif-Khodaei Z, Aliabadi M 2014 Smart Mater. Struct. 23 075007Google Scholar

    [40]

    Berger C R, Demissie B, Heckenbach J, Willett P, Zhou S 2010 IEEE J. Sel. Top. Sign. Proces. 4 226Google Scholar

    [41]

    Li J, Wu R B 1998 IEEE Trans. Sign. Proces. 46 2231Google Scholar

    [42]

    Xu Q W, Zheng Z, Jiang H B 2021 Chin. Phys. B 30 024302Google Scholar

    [43]

    Zhang J L, Li C Z, Jiang W C, Wang Z C, Zhang L J, Wang X 2022 IEEE Trans. Antennas Propag. 70 6336Google Scholar

    [44]

    Li C Z, Xi Z J, Jin G F, Jiang W C, Wang B S, Cai X R, Wang X 2023 IEEE Trans. Biomed. Eng. 70 2350Google Scholar

    [45]

    Wang B S, Sun Y F, Wang Z C, Wang X 2020 IEEE Trans. Microwave Theory Tech. 68 377Google Scholar

    [46]

    Yu L, Antoni J, Wu H, Leclere Q, Jiang W 2019 Mech. Syst. Sig. Process. 134 106309Google Scholar

    [47]

    Song J, Shen T, Wang Q W 2022 IEEE J. Electromagn. RF Microwaves Med. Biol. 7 59

    [48]

    Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X, Xu K W, Wang X 2023 IEEE Trans. Microwave Theory Tech. 71 2652Google Scholar

    [49]

    Huang L, Rong J, Yao L, Qi W Z, Wu D, Xu J Y, Jiang H B 2013 Chin. Phys. Lett. 30 124301Google Scholar

    [50]

    Nie L M, Xing D, Zhou Q, Yang D W, Guo H 2008 Med. Phys. 35 4026Google Scholar

    [51]

    Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242Google Scholar

    [52]

    Ku G, Wang L V 2001 Med. Phys. 28 4Google Scholar

    [53]

    Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013702Google Scholar

    [54]

    Fu Y, Ji Z, Ding W Z, Ye F H, Lou C G 2014 Med. Phys. 41 110701Google Scholar

    [55]

    Ding W Z, Ji Z, Ye F H, Lou C G, Xing D 2015 IEEE Trans. Microwave Theory Tech. 63 3272Google Scholar

    [56]

    Volmer C, Weber J, Stephan R, Blau K, Hein M A 2008 IEEE Trans. Antennas Propag. 56 360Google Scholar

    [57]

    Nan H, Arbabian A 2017 IEEE Trans. Microwave Theory Tech. 65 2607Google Scholar

    [58]

    Ku G, Wang L V 2000 Med. Phys. 27 1195Google Scholar

    [59]

    Xu M H, Xu Y, Wang L V 2003 IEEE Trans. Biomed. Eng. 50 1086Google Scholar

    [60]

    Xu M H, Wang L V 2002 IEEE Trans. Med. Imaging 21 814Google Scholar

    [61]

    Zhao Z Q, Song J, Zhu X Z, Wang J G, Wu J N, Liu Y L, Nie Z P, Liu Q H 2012 Electromagn. Waves 134 323

    [62]

    Cannata J M, Ritter T A, Chen W H, Silverman R H, Shung K K 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1548Google Scholar

    [63]

    Sun X L, Yang X C, Zhu X Y, Liu H H 2017 IEEE Sens. J. 18 1373

    [64]

    Li Z X, Chen D D, Fei C L, Li D, Feng W, Yang Y T 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 2202Google Scholar

    [65]

    Candès E J, Wakin M B 2008 IEEE Signal Process Mag. 25 21Google Scholar

    [66]

    Ye F H, Ji Z, Ding W Z, Lou C G, Yang S H, Xing D 2016 IEEE Trans. Med. Imaging 35 839Google Scholar

    [67]

    Chia S K, Speers C H, D’yachkova Y, Kang A, Malfair‐Taylor S, Barnett J, Coldman A, Gelmon K A, O’reilly S E, Olivotto I A 2007 Cancer 110 973Google Scholar

    [68]

    Youlden D R, Cramb S M, Dunn N A, Muller J M, Pyke C M, Baade P D 2012 Cancer Epidemiol. 36 237Google Scholar

    [69]

    Verkman A, Hara-Chikuma M, Papadopoulos M C 2008 J. Mol. Med. 86 523Google Scholar

    [70]

    Yu C H, Tang W, Wang Y H, Shen Q, Wang B, Cai C Q, Meng X J, Zou F 2016 Cancer Lett. 376 268Google Scholar

    [71]

    Baritaki S, Apostolakis S, Kanellou P, Dimanche‐Boitrel M T, Spandidos D A, Bonavida B 2007 Adv. Cancer Res. 98 149

    [72]

    Li X, Davis S K, Hagness S C, Van der Weide D W, Van Veen B D 2004 IEEE Trans. Microwave Theory Tech. 52 1856Google Scholar

    [73]

    Celik A R, Kurt M B, Helhel S 2019 ACES 34 1549

    [74]

    Kruger R A, Miller K D, Reynolds H E, Kiser Jr W L, Reinecke D R, Kruger G A 2000 Radiology 216 279Google Scholar

    [75]

    Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2022 IEEE Trans. Med. Imaging 41 1080Google Scholar

    [76]

    Huang Y, Omar M, Tian W, Lopez-Schier H, Westmeyer G G, Chmyrov A, Sergiadis G, Ntziachristos V 2021 Sci. Adv. 7 eabd1505Google Scholar

    [77]

    Joines W T, Jirtle R L, Rafal M D, Schaefer D J 1980 Inte. J. Radiat. Oncol. Biol. Phys. 6 681Google Scholar

    [78]

    Zheng Z, Jiang Y C, Huang L, Zhao Y, Jiang H B 2020 J. X-Ray Sci. Technol. 28 137

    [79]

    Zhao Y, Chi Z H, Huang L, Zheng Z, Yang J G, Jiang H B 2017 J. Innovative Opt. Health Sci. 10 1740001Google Scholar

    [80]

    Cunningham L S, Kelsey J L 1984 Am. J. Public Health 74 574Google Scholar

    [81]

    Tański W, Dudek K, Tomasiewicz A, Świątoniowska-Lonc N 2022 Int. J. Environ. Res. Public Health 19 3088Google Scholar

    [82]

    Gadeval A, Chaudhari S, Bollampally S P, et al. 2021 Drug Discovery Today 26 2315Google Scholar

    [83]

    Thornton G, Shrive N, Frank C 2001 J. Orthop. Res. 19 845Google Scholar

    [84]

    Buckwalter J A, Mow V C, Ratcliffe A 1994 JAAOS-J. Am. Acad. Orthopaedic Surgeons 2 192Google Scholar

    [85]

    Sultan K S, Mohammed B, Manoufali M, Abbosh A M 2021 IEEE Trans. Antennas Propag. 69 6824Google Scholar

    [86]

    Chi Z H, Zhao Y, Huang L, Zheng Z, Jiang H B 2016 Med. Phys. 43 6226Google Scholar

    [87]

    Chi Z H, Zhao Y, Yang J G, Li T T, Zhang G, Jiang H B 2019 IEEE Trans. Biomed. Eng. 66 1598Google Scholar

    [88]

    Gandhi M S, Kamalov G, Shahbaz A U, Bhattacharya S K, Ahokas R A, Sun Y, Gerling I C, Weber K T 2011 Heart Fail. Rev. 16 23Google Scholar

    [89]

    Weber K T, Sun Y, Bhattacharya S K, Ahokas R A, Gerling I C 2013 Nat. Rev. Cardiol. 10 15Google Scholar

    [90]

    Friedberg C K, Horn H 1939 J. Am. Med. Assoc. 112 1675Google Scholar

    [91]

    Smit M, Coetzee A, Lochner A 2020 J. Cardiothorac. Vasc. Anesth. 34 2501Google Scholar

    [92]

    Alpert J S 1989 Cardiology 76 85Google Scholar

    [93]

    Li Y J, Zhang S X, Wu L H, et al. 2022 Photonics Res. 10 1297Google Scholar

  • 图 1  热声效应示意图

    Figure 1.  Schematic diagram of TA effect.

    图 2  微波热声信号延时叠加算法示意图

    Figure 2.  Schematic diagram of the thermoacoustic signal delay superposition algorithm.

    图 3  微波热声成像技术典型实现方案 (a)微波乳腺热声成像一体化探头装置图[16]; (b)微波热声脑成像装置图[15]; (c)微波乳腺热声成像装置[66]; (d)微波热声关节成像装置图[17]

    Figure 3.  Typical implementation scheme of microwave thermoacoustic imaging technology: (a) Microwave-induced breast thermoacoustic imaging integrated probe device[16]; (b) diagram of a Microwave-induced brain thermoacoustic imaging device[15]; (c) microwave-induced breast thermoacoustic imaging system[66]; (d) microwave-induced thermoacoustic joint imaging device[17].

    图 4  微波热声成像乳腺成像 (a) Kruger等[74]的乳腺成像图; (b) 微波热声乳腺成像实操图[16]; (c) 乳房的解剖结构示意图[16]; (d) 覃欢团队[16]乳腺成像图

    Figure 4.  MTAI breast imaging: (a) Kruger et al.[74] breast imaging; (b) microwave thermoacoustic breast imaging actual operation diagram[16]; (c) anatomical diagram of the breast[16]; (d) breast imaging of Professor Qin Huan’s team[16].

    图 5  微波热声脑成像[15] (a) 两只新生小鼠脑出血的热声图像及出血区域标注(白色区域); (b) 脑出血组织切片与相应热声图像对照

    Figure 5.  MTAI brain imaging[15]: (a) MTAI image and bleeding area (white area) of cerebral hemorrhage in two newborn mice; (b) comparison of cerebral hemorrhage tissue slices with corresponding MTAI images.

    图 6  受试者中指的热声图像 (T0-T30)和MRI (M2-M30)的比较[17]

    Figure 6.  Comparison of MTAI (T0-T30) and MRI (M2-M30) of subjects’ middle fingers[17].

    图 7  偏振微波热声心梗模型成像[93] (a) 偏振微波热声成像系统的示意图和用于计算异质性参数(DOMA)的偏振微波热声成像机制; (b) 超声图像及相应的DOMA图像

    Figure 7.  P-MTAI myocardial infarction model detection[93]: (a) Schematic diagram of the P-MTAI imaging system and the P-MTAI mechanism used to calculate DOMA; (b) ultrasonic images and corresponding DOMA images.

    表 1  微波源各参数对成像影响

    Table 1.  Influence of various parameters of microwave source on imaging.

    成像影响微波源参数
    分辨率脉冲宽度、
    脉冲波形
    信噪比脉冲重复频率、
    脉冲能量强度
    对比度中心频率、
    脉冲能量强度
    成像深度中心频率、
    脉冲能量强度
    DownLoad: CSV

    表 2  主要脑组织在3.05 GHz下的电导率[15]

    Table 2.  Conductivity property of major brain tissues at 3.05 GHz[15].

    物质 电导率/(S·m–1)
    脑灰质 2.2588
    脑白质 1.5393
    血液 3.0991
    脑脊液 4.0592
    小脑 2.5189
    血管壁 1.8444
    硬膜 2.0485
    脊髓 1.3530
    DownLoad: CSV

    表 3  关节各组织在3 GHz下的电导率和介电常数[85]

    Table 3.  Conductivity and permittivity of each tissue of the joint at 3 GHz[85].

    物质相对介电常数电导率/(S·m–1)
    肌腱/韧带42.132.17
    软骨37.612.21
    骨松质17.941.01
    DownLoad: CSV
  • [1]

    Ketcham R A, Carlson W D 2001 Comput. Geosci. 27 381Google Scholar

    [2]

    Bushong S C, Clarke G 2003 Magnetic Resonance Imaging: Physical and Biological Principles (Amsterdam: Elsevier Health Sciences) pp58–65

    [3]

    Bushberg J T, Boone J M 2011 The Essential Physics of Medical Imaging (Philadelphia: Lippincott Williams & Wilkins) pp171–202

    [4]

    Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A 2020 ACS Biomater. Sci. Eng. 6 4377Google Scholar

    [5]

    Chan V, Perlas A 2011 Atlas of Ultrasound-guided Procedures in Interventional Pain Management (New York: Springer) p13

    [6]

    Nguyen K C T, Le L H, Kaipatur N R, Zheng R, Lou E H, Major P W 2016 Ann. Biomed. Eng. 44 2874Google Scholar

    [7]

    Wang H, Liu N 2020 J. Med. Imaging Health Inf. 10 918Google Scholar

    [8]

    Xu M H, Ku G, Jin X, Wang L V, Fornage B D, Hunt K K 2005 The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics 5697 45

    [9]

    Behari J 2019 Radio Frequency and Microwave Effects on Biological Tissues (New York: CRC Press) pp63–82

    [10]

    Chen H, Tang X, Nie G, Wang Z, Hu J, Hu J, Qin H 2023 J. Innovative Opt. Health Sci. 16 2243002Google Scholar

    [11]

    Lin J C 2005 Advances in Electromagnetic Fields in Living Systems (Boston: Springer) p41

    [12]

    Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725

    [13]

    Rahpeima R, Soltani M, Kashkooli F M 2020 Comput. Methods Programs Biomed. 196 105606Google Scholar

    [14]

    Liu Q, Liang X, Li T, Chao W, Qi W Z, Jin T, Gong Y, Jiang H B, Xi L 2023 IEEE Trans. Med. Imaging 42 2425

    [15]

    Zhao Y, Shan T, Chi Z H, Jiang H B 2020 J. Xray Sci. Technol. 28 83

    [16]

    Ren M Y, Cheng Z W, Wu L H, et al. 2023 IEEE Trans. Biomed. Eng. 70 175Google Scholar

    [17]

    Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84Google Scholar

    [18]

    Vander Vorst A, Rosen A, Kotsuka Y 2006 RF/microwave Interaction With Biological Tissues (Hoboken: John Wiley & Sons) pp30–38

    [19]

    Schwan H P, Foster K R 1980 Proc. IEEE 68 104Google Scholar

    [20]

    Foster K R, Schwan H P 2019 CRC Handbook of Biological Effects of Electromagnetic Fields (Boca Raton: CRC press) pp27–76

    [21]

    Fiedler T M, Ladd M E, Bitz A K 2018 Neuroimage 168 33Google Scholar

    [22]

    Williams J M 2001 arXiv: 0102007 [physics.gen-ph

    [23]

    Bacon C, Guilliorit E, Hosten B, Chimenti D E 2001 J. Acoust. Soc. Am. 110 1398Google Scholar

    [24]

    Dagro A M, Wilkerson J W, Thomas T P, Kalinosky B T, Payne J A 2021 Sci. Adv. 7 eabd8405Google Scholar

    [25]

    Zhang X C, Xu J 2010 Introduction to THz Wave Photonics (Vol. 29) (New York: Springer) pp70–82

    [26]

    Drain L 2019 Laser Ultrasonics: Techniques and Applications (New York: Routledge) pp305–322

    [27]

    Paltauf G, Dyer P E 2003 Chem. Rev. 103 487Google Scholar

    [28]

    Harris C M, Piersol A G 2002 Harris’ Shock and Vibration Handbook (Vol. 5) (New York: McGraw-Hill) p21

    [29]

    Drebushchak V 2020 J. Therm. Anal. Calorim. 142 1097Google Scholar

    [30]

    Gao F, Zheng Q, Zheng Y J 2014 Med. Phys. 41 053302Google Scholar

    [31]

    Luo W L, Ji Z, Yang S H, Xing D 2018 Phys. Rev. Appl. 10 1728

    [32]

    Lou C G, Yang S H, Ji Z, Chen Q, Xing D 2012 Phys. Rev. Lett. 109 218101Google Scholar

    [33]

    Ji Z, Lou C G, Yang S H, Xing D 2012 Med. Phys. 39 6738Google Scholar

    [34]

    Yan J, Tao C J, Wu S Z 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, 17–18 January 2006 p1521

    [35]

    Lou C G, Nie L M, Xu D 2011 J. Appl. Phys. 110 083101Google Scholar

    [36]

    Ji Z, Ding W Z, Ye F H, Lou C G, Xing D 2015 Appl. Phys. Lett. 107 094104Google Scholar

    [37]

    Ji Z, Lou C G, Shi Y, Ding W Z, Yang S H, Xing D 2015 Appl. Phys. Lett. 107 839

    [38]

    Wang X, Bauer D R, Vollin J L, Manzi D G, Witte R S, Xin H 2012 IEEE Antennas Wirel. Propag. Lett. 11 1634Google Scholar

    [39]

    Sharif-Khodaei Z, Aliabadi M 2014 Smart Mater. Struct. 23 075007Google Scholar

    [40]

    Berger C R, Demissie B, Heckenbach J, Willett P, Zhou S 2010 IEEE J. Sel. Top. Sign. Proces. 4 226Google Scholar

    [41]

    Li J, Wu R B 1998 IEEE Trans. Sign. Proces. 46 2231Google Scholar

    [42]

    Xu Q W, Zheng Z, Jiang H B 2021 Chin. Phys. B 30 024302Google Scholar

    [43]

    Zhang J L, Li C Z, Jiang W C, Wang Z C, Zhang L J, Wang X 2022 IEEE Trans. Antennas Propag. 70 6336Google Scholar

    [44]

    Li C Z, Xi Z J, Jin G F, Jiang W C, Wang B S, Cai X R, Wang X 2023 IEEE Trans. Biomed. Eng. 70 2350Google Scholar

    [45]

    Wang B S, Sun Y F, Wang Z C, Wang X 2020 IEEE Trans. Microwave Theory Tech. 68 377Google Scholar

    [46]

    Yu L, Antoni J, Wu H, Leclere Q, Jiang W 2019 Mech. Syst. Sig. Process. 134 106309Google Scholar

    [47]

    Song J, Shen T, Wang Q W 2022 IEEE J. Electromagn. RF Microwaves Med. Biol. 7 59

    [48]

    Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X, Xu K W, Wang X 2023 IEEE Trans. Microwave Theory Tech. 71 2652Google Scholar

    [49]

    Huang L, Rong J, Yao L, Qi W Z, Wu D, Xu J Y, Jiang H B 2013 Chin. Phys. Lett. 30 124301Google Scholar

    [50]

    Nie L M, Xing D, Zhou Q, Yang D W, Guo H 2008 Med. Phys. 35 4026Google Scholar

    [51]

    Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242Google Scholar

    [52]

    Ku G, Wang L V 2001 Med. Phys. 28 4Google Scholar

    [53]

    Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013702Google Scholar

    [54]

    Fu Y, Ji Z, Ding W Z, Ye F H, Lou C G 2014 Med. Phys. 41 110701Google Scholar

    [55]

    Ding W Z, Ji Z, Ye F H, Lou C G, Xing D 2015 IEEE Trans. Microwave Theory Tech. 63 3272Google Scholar

    [56]

    Volmer C, Weber J, Stephan R, Blau K, Hein M A 2008 IEEE Trans. Antennas Propag. 56 360Google Scholar

    [57]

    Nan H, Arbabian A 2017 IEEE Trans. Microwave Theory Tech. 65 2607Google Scholar

    [58]

    Ku G, Wang L V 2000 Med. Phys. 27 1195Google Scholar

    [59]

    Xu M H, Xu Y, Wang L V 2003 IEEE Trans. Biomed. Eng. 50 1086Google Scholar

    [60]

    Xu M H, Wang L V 2002 IEEE Trans. Med. Imaging 21 814Google Scholar

    [61]

    Zhao Z Q, Song J, Zhu X Z, Wang J G, Wu J N, Liu Y L, Nie Z P, Liu Q H 2012 Electromagn. Waves 134 323

    [62]

    Cannata J M, Ritter T A, Chen W H, Silverman R H, Shung K K 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1548Google Scholar

    [63]

    Sun X L, Yang X C, Zhu X Y, Liu H H 2017 IEEE Sens. J. 18 1373

    [64]

    Li Z X, Chen D D, Fei C L, Li D, Feng W, Yang Y T 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 2202Google Scholar

    [65]

    Candès E J, Wakin M B 2008 IEEE Signal Process Mag. 25 21Google Scholar

    [66]

    Ye F H, Ji Z, Ding W Z, Lou C G, Yang S H, Xing D 2016 IEEE Trans. Med. Imaging 35 839Google Scholar

    [67]

    Chia S K, Speers C H, D’yachkova Y, Kang A, Malfair‐Taylor S, Barnett J, Coldman A, Gelmon K A, O’reilly S E, Olivotto I A 2007 Cancer 110 973Google Scholar

    [68]

    Youlden D R, Cramb S M, Dunn N A, Muller J M, Pyke C M, Baade P D 2012 Cancer Epidemiol. 36 237Google Scholar

    [69]

    Verkman A, Hara-Chikuma M, Papadopoulos M C 2008 J. Mol. Med. 86 523Google Scholar

    [70]

    Yu C H, Tang W, Wang Y H, Shen Q, Wang B, Cai C Q, Meng X J, Zou F 2016 Cancer Lett. 376 268Google Scholar

    [71]

    Baritaki S, Apostolakis S, Kanellou P, Dimanche‐Boitrel M T, Spandidos D A, Bonavida B 2007 Adv. Cancer Res. 98 149

    [72]

    Li X, Davis S K, Hagness S C, Van der Weide D W, Van Veen B D 2004 IEEE Trans. Microwave Theory Tech. 52 1856Google Scholar

    [73]

    Celik A R, Kurt M B, Helhel S 2019 ACES 34 1549

    [74]

    Kruger R A, Miller K D, Reynolds H E, Kiser Jr W L, Reinecke D R, Kruger G A 2000 Radiology 216 279Google Scholar

    [75]

    Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2022 IEEE Trans. Med. Imaging 41 1080Google Scholar

    [76]

    Huang Y, Omar M, Tian W, Lopez-Schier H, Westmeyer G G, Chmyrov A, Sergiadis G, Ntziachristos V 2021 Sci. Adv. 7 eabd1505Google Scholar

    [77]

    Joines W T, Jirtle R L, Rafal M D, Schaefer D J 1980 Inte. J. Radiat. Oncol. Biol. Phys. 6 681Google Scholar

    [78]

    Zheng Z, Jiang Y C, Huang L, Zhao Y, Jiang H B 2020 J. X-Ray Sci. Technol. 28 137

    [79]

    Zhao Y, Chi Z H, Huang L, Zheng Z, Yang J G, Jiang H B 2017 J. Innovative Opt. Health Sci. 10 1740001Google Scholar

    [80]

    Cunningham L S, Kelsey J L 1984 Am. J. Public Health 74 574Google Scholar

    [81]

    Tański W, Dudek K, Tomasiewicz A, Świątoniowska-Lonc N 2022 Int. J. Environ. Res. Public Health 19 3088Google Scholar

    [82]

    Gadeval A, Chaudhari S, Bollampally S P, et al. 2021 Drug Discovery Today 26 2315Google Scholar

    [83]

    Thornton G, Shrive N, Frank C 2001 J. Orthop. Res. 19 845Google Scholar

    [84]

    Buckwalter J A, Mow V C, Ratcliffe A 1994 JAAOS-J. Am. Acad. Orthopaedic Surgeons 2 192Google Scholar

    [85]

    Sultan K S, Mohammed B, Manoufali M, Abbosh A M 2021 IEEE Trans. Antennas Propag. 69 6824Google Scholar

    [86]

    Chi Z H, Zhao Y, Huang L, Zheng Z, Jiang H B 2016 Med. Phys. 43 6226Google Scholar

    [87]

    Chi Z H, Zhao Y, Yang J G, Li T T, Zhang G, Jiang H B 2019 IEEE Trans. Biomed. Eng. 66 1598Google Scholar

    [88]

    Gandhi M S, Kamalov G, Shahbaz A U, Bhattacharya S K, Ahokas R A, Sun Y, Gerling I C, Weber K T 2011 Heart Fail. Rev. 16 23Google Scholar

    [89]

    Weber K T, Sun Y, Bhattacharya S K, Ahokas R A, Gerling I C 2013 Nat. Rev. Cardiol. 10 15Google Scholar

    [90]

    Friedberg C K, Horn H 1939 J. Am. Med. Assoc. 112 1675Google Scholar

    [91]

    Smit M, Coetzee A, Lochner A 2020 J. Cardiothorac. Vasc. Anesth. 34 2501Google Scholar

    [92]

    Alpert J S 1989 Cardiology 76 85Google Scholar

    [93]

    Li Y J, Zhang S X, Wu L H, et al. 2022 Photonics Res. 10 1297Google Scholar

  • [1] Zhang Jia-Xi, Li Ling-Feng, Zhong Hong-Wen, Xiao Jia-Ying. Miniaturized photoacoustic/ultrasound endoscopic imaging probe for molecular imaging of deep tissues. Acta Physica Sinica, 2024, 73(21): 214203. doi: 10.7498/aps.73.20241076
    [2] Yin Hong-Run, Ye Ming, Wu Yang, Liu Kai, Pan Hua-Ping, Yao Jia-Feng. Biological tissue detection based on electrical impedance spectroscopic tomograsphy. Acta Physica Sinica, 2022, 71(4): 048706. doi: 10.7498/aps.71.20211600
    [3] Biological tissue detection based on electrical impedance spectroscopic tomography. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211600
    [4] Xie Shi-Meng, Huang Lin, Wang Xue, Chi Zi-Hui, Tang Yong-Hui, Zheng Zhu, Jiang Hua-Bei. Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array. Acta Physica Sinica, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [5] Tang Yong-Hui, Zheng Zhu, Xie Shi-Meng, Huang Lin, Jiang Hua-Bei. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit. Acta Physica Sinica, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [6] Zhou Tian-Yi. Optimal microwave imaging with random field illuminations. Acta Physica Sinica, 2019, 68(5): 055201. doi: 10.7498/aps.68.20182122
    [7] Jiang Hai-Feng. Progresses of ultrastable optical-cavity-based microwave source. Acta Physica Sinica, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [8] Yan Xiao-Lu, Zhang Xiao-Ping, Li Yang-Mei. Particle-in-cell simulation of a new X-band low-impedance high power microwave source. Acta Physica Sinica, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402
    [9] Zhang Yu, Tang Zhi-Lie, Wu Yong-Bo, Shu Gang. Three-dimensional photoacoustic imaging technique based on acoustic lens. Acta Physica Sinica, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [10] Yang Hua-Bin, Tong Li, Zhu Yi-Lun. Optimization design of dichroic plate for the advanced technology in microwave imaging diagnostic. Acta Physica Sinica, 2015, 64(16): 165202. doi: 10.7498/aps.64.165202
    [11] Du Jin-Song, Gao Yang, Bi Xin, Qi Wei-Zhi, Huang Lin, Rong Jian. S-band microwave-Induced thermo-acoustic tomography system. Acta Physica Sinica, 2015, 64(3): 034301. doi: 10.7498/aps.64.034301
    [12] Bi Xin, Huang Lin, Du Jing-Song, Qi Wei-Zhi, Gao Yang, Rong Jian, Jiang Hua-Bei. Pulsed microwave energy spatial distribution imaging by means of thermoacoustic tomography. Acta Physica Sinica, 2015, 64(1): 014301. doi: 10.7498/aps.64.014301
    [13] Liu Xi-Chuan, Gao Tai-Chang, Liu Lei, Zhai Dong-Li. Research on microphysical property of raindrops based on particle imaging velocimetry technology. Acta Physica Sinica, 2014, 63(2): 029203. doi: 10.7498/aps.63.029203
    [14] Xiao Xia, Song Hang, Wang Liang, Wang Zong-Jie, Lu Hong. Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Acta Physica Sinica, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [15] Ding Liang, Liu Pei-Guo, He Jian-Guo, Joe LoVetri. An optimal layered inhomogeneous background used in microwave tomography system in metallic chamber. Acta Physica Sinica, 2014, 63(18): 184102. doi: 10.7498/aps.63.184102
    [16] Ding Liang, Liu Pei-Guo, He Jian-Guo, Amer Zakaria, Joe LoVetri. Enhancing microwave tomography in a circular metallic chamber by an inhomogeneous background. Acta Physica Sinica, 2014, 63(4): 044102. doi: 10.7498/aps.63.044102
    [17] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Qiao Hai-Liang, Guo Wei-Jie, Zhang Dian-Hui. Optimal design of high-power microwave source based on particle simulation and genetic algorithms. Acta Physica Sinica, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [18] Zeng Zhi-Ping, Xie Wen-Ming, Zhang Jian-Ying, Li Li, Chen Shu-Qiang, Li Zhi-Fang, Li Hui. Imaging of human thyroid in vitro using focused photoacoustic tomography. Acta Physica Sinica, 2012, 61(9): 097801. doi: 10.7498/aps.61.097801
    [19] Liu Guang-Dong, Zhang Ye-Rong. Three-dimensional microwave-induced thermo-acousticimaging for breast cancer detection. Acta Physica Sinica, 2011, 60(7): 074303. doi: 10.7498/aps.60.074303
    [20] Zhang Hang. The optical tomography of tissues by a δ sound field. Acta Physica Sinica, 2004, 53(8): 2515-2519. doi: 10.7498/aps.53.2515
Metrics
  • Abstract views:  5620
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2023
  • Accepted Date:  30 June 2023
  • Available Online:  18 July 2023
  • Published Online:  20 October 2023

/

返回文章
返回