-
Thermoacoustic imaging (TAI) is an emerging biomedical imaging method in which microwave is used as an excitation source to generate acoustic signals. The TAI possesses the advantages of high contrast of microwave imaging and high resolution of ultrasound imaging, which is also noninvasive. While the signal-to-noise ratio (SNR) of TAI is often very low. It is usually required by averaging the thermoacoustic signal many times to improve the SNR. However, averaging the signal to improve the SNR can significantly reduce the TAI’s time resolution, which hinders the development of rapid TAI. Here in this paper, we propose to reduce the cost and improve the time resolution of TAI based on multi-channel amplifier and additive circuit. The received thermoacoustic signals are divided into 4 channels and then entered into 4 amplifiers simultaneously. After being amplified, the signals are added and collected by the data acquisition system for reconstructing the image. The phantom results indicate that the time resolution of TAI increases 5 times and the SNR rises from 6 dB to 12 dB, with the multi-channel amplifier and additive circuit adopted. The method proposed in this paper is helpful in promoting the development and clinical application of TAI, especially it has a great significance for developing the ultra-fast TAI. -
Keywords:
- thermoacoustic imaging /
- low cost /
- additive circuit /
- time resolution
[1] Bowen T 1981 Ultrasonics Symposium Chicago, USA, Oct. 14−16, 1981 p817
[2] Ku G, Wang L V 2000 Med. Phys. 27 1195
Google Scholar
[3] Xu M, Xu Y, Wang L V 2003 IEEE Trans. Biomed. Eng. 50 1086
Google Scholar
[4] Kruger R A, Reinecke D R, Kruger G A 1999 Med. Phys. 26 1832
Google Scholar
[5] Qin H, Cui Y S, Wu Z J, Chen Q, Xing D 2020 IEEE Photonics J. 99 1
Google Scholar
[6] Yao L, Guo G, Jiang H 2010 Med. Phys. 37 3752
Google Scholar
[7] Yuan Z, Jiang H 2007 Med. Phys. 34 538
Google Scholar
[8] Gao F, Zheng Y, Feng X, Ohl C D 2013 Appl. Phys. Lett. 102 063702
Google Scholar
[9] Kruger R A, Kiser W L, Reinecke D R, Kruger G A 2003 Med. Phys. 30 856
Google Scholar
[10] Huang L, Yao L, Liu L, Rong J, Jiang H 2012 Appl. Phys. Lett. 101 244106
Google Scholar
[11] Wang L V, Zhao X, Sun H, Ku G 1999 Rev. Sci. Instrum. 70 3744
Google Scholar
[12] Chen G P, Yu W B, Zhao Z Q, Nie Z P, Liu Q H 2008 J. Electromagnet. Wave. 22 1565
Google Scholar
[13] 陈国平, 赵志钦, 龚伟, 聂在平, 柳清伙 2009 科学通报 54 1786
Google Scholar
Chen G P, Zhao Z Q, Gong W, Nie Z P, Liu Q H 2009 Chin. Sci. Bull. 54 1786
Google Scholar
[14] Qin H, Yang S, Xing D 2012 Appl. Phys. Lett. 100 033701
Google Scholar
[15] Li C, Pramanik M, Ku G, Wang L V 2008 Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 77 031923
Google Scholar
[16] Qin H, Qin B, Yuan C, Chen Q, Xing D 2020 Theranostics 10 9172
Google Scholar
[17] Razansky D, Kellnberger S, Ntziachristos V 2010 Med. Phys. 37 4602
Google Scholar
[18] Wang X, Qin T, Qin Y, Abdelrahman A H, Witte R S, Xin H 2019 IEEE T. Antenn. Propag. 67 4803
Google Scholar
[19] Zheng Z, Jiang H 2019 Quant. Imag. Med. Surg. 9 625
Google Scholar
[20] Kellnberger S, Omar M, Sergiadis G, Ntziachristos V 2013 Appl. Phys. Lett. 103 153706
Google Scholar
[21] Hoelen C G A, de Mul F F M 2000 Appl. Opt. 39 5872
Google Scholar
-
图 5 仿体重建热声图 (a) 四通道加法电路不平均; (b) 四通道加法电路平均 25 次; (c) 四通道加法电路平均 50次; (d) 单通道不平均; (e) 单通道平均25次; (f) 单通道平均50次
Figure 5. Recovered TA images from phantom experimental data using the four-channel amplifier and additive circuit without average (a), the four-channel amplifier and additive circuit with 25 times average (b), the four-channel amplifier and additive circuit with 50 times average (c), the single channel without average (d), the single channel with 25 times average (e), and the single channel with 50 times average (f).
-
[1] Bowen T 1981 Ultrasonics Symposium Chicago, USA, Oct. 14−16, 1981 p817
[2] Ku G, Wang L V 2000 Med. Phys. 27 1195
Google Scholar
[3] Xu M, Xu Y, Wang L V 2003 IEEE Trans. Biomed. Eng. 50 1086
Google Scholar
[4] Kruger R A, Reinecke D R, Kruger G A 1999 Med. Phys. 26 1832
Google Scholar
[5] Qin H, Cui Y S, Wu Z J, Chen Q, Xing D 2020 IEEE Photonics J. 99 1
Google Scholar
[6] Yao L, Guo G, Jiang H 2010 Med. Phys. 37 3752
Google Scholar
[7] Yuan Z, Jiang H 2007 Med. Phys. 34 538
Google Scholar
[8] Gao F, Zheng Y, Feng X, Ohl C D 2013 Appl. Phys. Lett. 102 063702
Google Scholar
[9] Kruger R A, Kiser W L, Reinecke D R, Kruger G A 2003 Med. Phys. 30 856
Google Scholar
[10] Huang L, Yao L, Liu L, Rong J, Jiang H 2012 Appl. Phys. Lett. 101 244106
Google Scholar
[11] Wang L V, Zhao X, Sun H, Ku G 1999 Rev. Sci. Instrum. 70 3744
Google Scholar
[12] Chen G P, Yu W B, Zhao Z Q, Nie Z P, Liu Q H 2008 J. Electromagnet. Wave. 22 1565
Google Scholar
[13] 陈国平, 赵志钦, 龚伟, 聂在平, 柳清伙 2009 科学通报 54 1786
Google Scholar
Chen G P, Zhao Z Q, Gong W, Nie Z P, Liu Q H 2009 Chin. Sci. Bull. 54 1786
Google Scholar
[14] Qin H, Yang S, Xing D 2012 Appl. Phys. Lett. 100 033701
Google Scholar
[15] Li C, Pramanik M, Ku G, Wang L V 2008 Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 77 031923
Google Scholar
[16] Qin H, Qin B, Yuan C, Chen Q, Xing D 2020 Theranostics 10 9172
Google Scholar
[17] Razansky D, Kellnberger S, Ntziachristos V 2010 Med. Phys. 37 4602
Google Scholar
[18] Wang X, Qin T, Qin Y, Abdelrahman A H, Witte R S, Xin H 2019 IEEE T. Antenn. Propag. 67 4803
Google Scholar
[19] Zheng Z, Jiang H 2019 Quant. Imag. Med. Surg. 9 625
Google Scholar
[20] Kellnberger S, Omar M, Sergiadis G, Ntziachristos V 2013 Appl. Phys. Lett. 103 153706
Google Scholar
[21] Hoelen C G A, de Mul F F M 2000 Appl. Opt. 39 5872
Google Scholar
Catalog
Metrics
- Abstract views: 6508
- PDF Downloads: 172
- Cited By: 0