Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method of compensating for time measurement error of photomultiplier tube

Wang Chong Dang Wen-Bin Zhu Bing-Li Yang Kai Yang Jia-Hao Han Jiang-Hao

Citation:

Method of compensating for time measurement error of photomultiplier tube

Wang Chong, Dang Wen-Bin, Zhu Bing-Li, Yang Kai, Yang Jia-Hao, Han Jiang-Hao
PDF
HTML
Get Citation
  • In order to improve the temporal resolution of photomultiplier tubes, our research group has conducted the in-depth research on photomultiplier tubes based on microchannel plates that are widely used at present. The time resolution of photomultiplier tube based on microchannel plate is limited by the transit time of photoelectric signal in each part, including the transit time of photoelectric signal in the transmission process of photocathode to microchannel plate, the transit time of photoelectric signal in microchannel plate time, the transit time of the photoelectric signal from the microchannel plate to the detector anode, and the transit time of the photoelectric signal on the anode to the electrode port. The transit time of the whole process has a certain degree of influence on the time information measurement of the optoelectronic signal. In this study, various parameters affecting the time resolution of the photomultiplier tube are analyzed, and it is found that the different positions of the photoelectron signal on the anode will bring errors to the measurement of the arrival time of the signal at the anode, and the photoelectric signal is transmitted to the electrode port at the affected point of the anode The spent time will cause the signal measurement time to lag behind the real time, which indirectly affects the time resolution of the system. Therefore, a specific study is carried out on the time measurement error of the signal on the anode, and it is determined that the difference of the photoelectron signal on the anode position is an important factor causing the signal time measurement error, and a simple and effective method of compensating for error is proposed. In the research process, the delay line anode is used, and the positional resolution principle of the photoelectric signal is used to obtain the position information of the photoelectron signal on the anode, and the position information is converted into the time information transmitted from the position to the electrode port. The theoretical value of the transit time on the anode is offset, eliminating unnecessary time in the time-of-arrival measurement of the photoelectron signal. The time measurement error of the optoelectronic signal is compensated for by this time information. The experimental results show that the error compensation method can effectively improve the time measurement accuracy of optoelectronic signals, and provide solutions and theoretical basis for improving the time resolution of photomultiplier tubes based on microchannel plates.
      Corresponding author: Dang Wen-Bin, Dang_wb@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805199 ), and the Natural Science Foundation of Shaanxi Province (Grant No. 2020JM-578).
    [1]

    高峰, 李峰辉, 李娇, 易茜, 陈琛 2014 天津大学学报 (自然科学与工程技术版) 47 518Google Scholar

    Gao F, Li F H, Li J, Yi Q, Chen C 2014 J. Tianjin Univ. (Sci. Technol.) 47 518Google Scholar

    [2]

    Hirvonen L M, Becker W, Milnes J, Conneely T, Smietana S, Marois A L, Jagutzki O, Suhling K 2016 Appl. Phys. Lett. 109 071101Google Scholar

    [3]

    王俊, 徐波, 叶志成, 陆文强, 郑建亚, 夏顺保, 高立模 2006 物理实验 26 44Google Scholar

    Wang J, Xu B, Ye Z C, Lu W Q, Zheng J Y, Xia S B, Gao L M 2006 Phys. Experiment. 26 44Google Scholar

    [4]

    Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P 2006 SPIE Opt. East 6372 229Google Scholar

    [5]

    Rech I, Gulinatti A, Crotti M, Cammi C, Maccagnani P, Ghioni M 2011 J. Mod. Opt. 58 233Google Scholar

    [6]

    Michalet X, Siegmund O H W, Vallerga J V, Jelinsky P, Millaud J E, Weiss S 2006 Proc. SPIE Int. Soc. Opt. Eng. 6092 141Google Scholar

    [7]

    贺青, 刘剑, 韦联福 2022 广西师范大学学报(自然科学版) 40 in pressGoogle Scholar

    He Q, Liu J, Wei L F 2022 J. Guangxi Normal Univ. (Nat. Sci). 40 in pressGoogle Scholar

    [8]

    程碑彤, 代千, 谢修 敏, 徐强, 张杉, 宋海智 2022 激光技术 46 in press

    Cheng B T, Dai Q, Xie X M, Xu Q, Zhang S, Song H Z 2022 Laser Technology 46 in press

    [9]

    张雪皎, 万钧力 2007 激光杂志 28 13Google Scholar

    Zhang X J, Wan J L 2007 Laser J. 28 13Google Scholar

    [10]

    雷帆朴 2019 博士学位论文 (北京: 中国科学院大学)

    Lei F P 2019 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [11]

    鄢秋荣 2012 博士学位论文 (北京: 中国科学院大学)

    Yan Q R 2012 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [12]

    Jagutzki O, Lapington J S, Worth L B C, Spillman U, Mergel V, Schmidt-Böcking H 2002 Nucl. Instrum. Meth. A 477 256Google Scholar

    [13]

    缑永胜 2017 博士学位论文 (北京: 中国科学院大学)

    Gou Y S 2017 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [14]

    杨文正 2010 博士学位论文 (北京: 中国科学院大学)

    Yang W Z 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [15]

    蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2009 强激光与粒子束 21 1542

    Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2009 High Power Laser Partic. Beams 21 1542

    [16]

    蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2008 应用光学 29 895Google Scholar

    Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2008 J. Appl. Opt. 29 895Google Scholar

    [17]

    Jagutzki O, Mergel V, Ullmann-Pfleger K, Spielberger L, Schmidt-Boecking H W 1998 Proc. SPIE 3438 322Google Scholar

    [18]

    Jagutzki O, Barnstedt J, Spillmann U, Spielberger L, Mergel V, Ullmann-Pfleger K, Grewing M, Schmidt-Boecking H W 1999 Int. Soc. Opt. Photon. 3764 61

    [19]

    雷帆朴, 白永林, 朱炳利, 白晓红, 秦君军, 徐鹏, 侯洵 2017 光谱学与光谱分析 37 2989Google Scholar

    Lei F P, Bai Y L, Zhu B L, Bai X H, Qin J J, Xu P, Hou X 2017 Spectrosc. Spect. Anal. 37 2989Google Scholar

    [20]

    潘京生 2021 激光与光电子学进展 58 80Google Scholar

    Pan J S 2021 Laser Optoelectron. P. 58 80Google Scholar

  • 图 1  TCSPC系统装置

    Figure 1.  TCSPC system device.

    图 2  光电子在MCP-PMT中渡越示意图

    Figure 2.  Schematic diagram of photoelectron transition in MCP-PMT.

    图 3  阳极接收光电子信号示意图

    Figure 3.  Schematic diagram of anode receiving photoelectron signal

    图 4  延迟线阳极接收信号示意图

    Figure 4.  Schematic diagram of the signal received by the anode of the delay line.

    图 5  (a) 延迟线收集到光电子; (b) 二维延迟线位置分辨图示

    Figure 5.  (a) Photoelectrons collected by delay line; (b) position-resolved illustration of a 2D delay line.

    图 6  (a) 延迟线阳极实物图; (b) 延迟线阳极探测器示意图

    Figure 6.  (a) Real picture of delay line anode; (b) schematic diagram of the delay line anode detector.

    图 7  (a) 上层延迟线端到端测试; (b) 下层延迟线端到端测试

    Figure 7.  (a) The end-to-end test of the upper delay line; (b) the end-to-end test of the lower delay line.

    图 8  (a)—(h) 分别为a, b, c, d, e, f, g, h的信号脉冲

    Figure 8.  (a)–(h) are the signal pulses at point a, b, c, d, e, f, g, h, respectively.

    表 1  端到端延时测试结果

    Table 1.  End-to-end latency test results.

    端到端延迟/ns平均幅值/mV衰减/%
    X 方向4.7528642.8
    Y 方向6.1533632.8
    DownLoad: CSV

    表 2  时间测量误差补偿结果

    Table 2.  Time measurement error compensation results.

    随机位置点到达时间测试值/ns到达时间实际值/ns
    a7.144.956
    b6.785.019
    c6.485.029
    d5.9254.747
    e6.54.918
    f5.3814.351
    g6.6675.062
    h6.3584.932
    DownLoad: CSV
  • [1]

    高峰, 李峰辉, 李娇, 易茜, 陈琛 2014 天津大学学报 (自然科学与工程技术版) 47 518Google Scholar

    Gao F, Li F H, Li J, Yi Q, Chen C 2014 J. Tianjin Univ. (Sci. Technol.) 47 518Google Scholar

    [2]

    Hirvonen L M, Becker W, Milnes J, Conneely T, Smietana S, Marois A L, Jagutzki O, Suhling K 2016 Appl. Phys. Lett. 109 071101Google Scholar

    [3]

    王俊, 徐波, 叶志成, 陆文强, 郑建亚, 夏顺保, 高立模 2006 物理实验 26 44Google Scholar

    Wang J, Xu B, Ye Z C, Lu W Q, Zheng J Y, Xia S B, Gao L M 2006 Phys. Experiment. 26 44Google Scholar

    [4]

    Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P 2006 SPIE Opt. East 6372 229Google Scholar

    [5]

    Rech I, Gulinatti A, Crotti M, Cammi C, Maccagnani P, Ghioni M 2011 J. Mod. Opt. 58 233Google Scholar

    [6]

    Michalet X, Siegmund O H W, Vallerga J V, Jelinsky P, Millaud J E, Weiss S 2006 Proc. SPIE Int. Soc. Opt. Eng. 6092 141Google Scholar

    [7]

    贺青, 刘剑, 韦联福 2022 广西师范大学学报(自然科学版) 40 in pressGoogle Scholar

    He Q, Liu J, Wei L F 2022 J. Guangxi Normal Univ. (Nat. Sci). 40 in pressGoogle Scholar

    [8]

    程碑彤, 代千, 谢修 敏, 徐强, 张杉, 宋海智 2022 激光技术 46 in press

    Cheng B T, Dai Q, Xie X M, Xu Q, Zhang S, Song H Z 2022 Laser Technology 46 in press

    [9]

    张雪皎, 万钧力 2007 激光杂志 28 13Google Scholar

    Zhang X J, Wan J L 2007 Laser J. 28 13Google Scholar

    [10]

    雷帆朴 2019 博士学位论文 (北京: 中国科学院大学)

    Lei F P 2019 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [11]

    鄢秋荣 2012 博士学位论文 (北京: 中国科学院大学)

    Yan Q R 2012 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [12]

    Jagutzki O, Lapington J S, Worth L B C, Spillman U, Mergel V, Schmidt-Böcking H 2002 Nucl. Instrum. Meth. A 477 256Google Scholar

    [13]

    缑永胜 2017 博士学位论文 (北京: 中国科学院大学)

    Gou Y S 2017 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [14]

    杨文正 2010 博士学位论文 (北京: 中国科学院大学)

    Yang W Z 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [15]

    蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2009 强激光与粒子束 21 1542

    Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2009 High Power Laser Partic. Beams 21 1542

    [16]

    蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2008 应用光学 29 895Google Scholar

    Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2008 J. Appl. Opt. 29 895Google Scholar

    [17]

    Jagutzki O, Mergel V, Ullmann-Pfleger K, Spielberger L, Schmidt-Boecking H W 1998 Proc. SPIE 3438 322Google Scholar

    [18]

    Jagutzki O, Barnstedt J, Spillmann U, Spielberger L, Mergel V, Ullmann-Pfleger K, Grewing M, Schmidt-Boecking H W 1999 Int. Soc. Opt. Photon. 3764 61

    [19]

    雷帆朴, 白永林, 朱炳利, 白晓红, 秦君军, 徐鹏, 侯洵 2017 光谱学与光谱分析 37 2989Google Scholar

    Lei F P, Bai Y L, Zhu B L, Bai X H, Qin J J, Xu P, Hou X 2017 Spectrosc. Spect. Anal. 37 2989Google Scholar

    [20]

    潘京生 2021 激光与光电子学进展 58 80Google Scholar

    Pan J S 2021 Laser Optoelectron. P. 58 80Google Scholar

  • [1] Tian Li-Ping, Shen Ling-bin, Chen Ping, Liu Yu-zhu, Chen Lin, Hui Dan-dan, Chen Xi-ru, Zhao Wei, Xue Yan-hua. 100 fs time-resolved streak tube design based on anisotropy and post-acceleration technology. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] Tian Li-Ping, Shen Ling-Bin, Chen Ping, Liu Yu-Zhu, Chen Lin, Hui Dan-Dan, Chen Xi-Ru, Zhao Wei, Xue Yan-Hua, Tian Jin-Shou. 100-fs time-resolved streak tube design based on anisotropy and post-acceleration technology. Acta Physica Sinica, 2023, 72(24): 248502. doi: 10.7498/aps.72.20231382
    [3] Yuyan Xiang,  Li song,  Ma yue. Effect of PMT output electron flow pulse pile-up on photon counting ranging method. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220537
    [4] Xiang Yu-Yan, Li Song, Ma Yue. Effect of pile-up of electron flow pulse from photomultiplier tube on ranging by photon counting. Acta Physica Sinica, 2022, 71(21): 214206. doi: 10.7498/aps.71.20220537
    [5] Tang Yong-Hui, Zheng Zhu, Xie Shi-Meng, Huang Lin, Jiang Hua-Bei. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit. Acta Physica Sinica, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [6] Sun Chun-Yan, Wang Gui-Shi, Zhu Gong-Dong, Tan Tu, Liu Kun, Gao Xiao-Ming. Atmospheric CO2 column concentration retrieval based on high resolution laser heterodyne spectra and evaluation method of system measuring error. Acta Physica Sinica, 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [7] Tian Li-Ping, Li Li-Li, Wen Wen-Long, Wang Xing, Chen Ping, Lu Yu, Wang Jun-Feng, Zhao Wei, Tian Jin-Shou. Numerical calculation and experimental study on the small-size streak tube. Acta Physica Sinica, 2018, 67(18): 188501. doi: 10.7498/aps.67.20180643
    [8] Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2. Acta Physica Sinica, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [9] Yuan Zheng, Dong Jian-Jun, Li Jin, Chen Tao, Zhang Wen-Hai, Cao Zhu-Rong, Yang Zhi-Wen, Wang Jing, Zhao Yang, Liu Shen-Ye, Yang Jia-Min, Jiang Shao-En. Calibration of the dynamic spatial resolution of framing image-converter. Acta Physica Sinica, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [10] Guo Le-Hui, Tian Jin-Shou, Lu Yu, Li Hong-Wei. Optimization of the 3-inch photomultiplier tube for the neutrino detection. Acta Physica Sinica, 2016, 65(22): 228501. doi: 10.7498/aps.65.228501
    [11] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [12] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution. Acta Physica Sinica, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [13] Zhang Jun-Long, Yang Liang, Yan Hui-Jie, Hua Yue, Ren Chun-Sheng. Influence of discharge parameters on blow-by in a coaxial plasma gun. Acta Physica Sinica, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [14] Liang Ling-Liang, Tian Jin-Shou, Wang Tao, Li Fu-Li, Gao Gui-Long, Wang Jun-Feng, Wang Chao, Lu Yu, Xu Xiang-Yan, Cao Xi-Bin, Wen Wen-Long, Xin Li-Wei, Liu Hu-Lin, Wang Xing. Theoretical and static experiment research on all optical solid state streak camera. Acta Physica Sinica, 2014, 63(6): 060702. doi: 10.7498/aps.63.060702
    [15] Liu Rong, Tian Jin-Shou, Li Hao, Wang Qiang-Qiang, Wang Chao, Wen Wen-Long, Lu Yu, Liu Hu-Lin, Cao Xi-Bin, Wang Jun-Feng, Xu Xiang-Yan, Wang Xing. Design and evaluation of a pre-traveling wave deflector magnetic solenoid lens focused streak image tube. Acta Physica Sinica, 2014, 63(5): 058501. doi: 10.7498/aps.63.058501
    [16] He Yong-Zhou. Study on cryogenic remanence measurement technology for chunk permanent magnet. Acta Physica Sinica, 2013, 62(21): 217502. doi: 10.7498/aps.62.217502
    [17] Hu Hui-Jun, Zhao Bao-Sheng, Sheng Li-Zhi, Sai Xiao-Feng, Yan Qiu-Rong, Chen Bao-Mei, Wang Peng. X-ray photon counting detector for x-ray pulsar-based navigation. Acta Physica Sinica, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [18] Chen Lin-Hui, Rao Chang-Hui. Error analysis of correlating Shack-Hartmann wave-front sensor for a point source. Acta Physica Sinica, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [19] Wang Qian-Qian, Wei Guang-Hui. . Acta Physica Sinica, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
    [20] WANG SHOU-MIN. THE INVESTIGATION OF THE TIME RESOLUTION CHARACTERISTICS OF A PHOTOMULTIPLIER. Acta Physica Sinica, 1962, 18(11): 600-604. doi: 10.7498/aps.18.600
Metrics
  • Abstract views:  3580
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  17 June 2022
  • Accepted Date:  28 July 2022
  • Available Online:  09 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回