Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of Sen1 translocation

Zhang Yue-Yue Han Wei-Jing Chen Tong-Sheng Wang Shuang

Zhang Yue-Yue, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Mechanism of Sen1 translocation. Acta Phys. Sin., 2023, 72(10): 108701. doi: 10.7498/aps.72.20230187
Citation: Zhang Yue-Yue, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Mechanism of Sen1 translocation. Acta Phys. Sin., 2023, 72(10): 108701. doi: 10.7498/aps.72.20230187

Mechanism of Sen1 translocation

Zhang Yue-Yue, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Transcription termination is a critical step for gene regulation and genome integrity among all kingdoms of life. In Saccharomyces cerevisiae, one of the major termination pathways is accomplished by Sen1 helicase, a homolog to human Senataxin (SETX), defection of which raises the diseases for the central nervus system of human. Although it has been proposed that Sen1 translocates along nucleic acids by consuming adenosine triphosphates (ATPs) during termination, the mechanism for this translocation activity of Sen1 has not been well understood. In this work, our aim is to investigate the mechanism of Sen1 translocation by measuring the interactions between Sen1 and different types of nucleic acids by polyacrylamide gel electrophoresis (PAGE) assay or single-molecule Fӧrster resonance energy transfer (FRET) assay. We firstly observe the unwinding activity of Sen1 on a tailed duplex DNA in the presence of 1 mM ATP via PAGE assay, where the translocation activity of Sen1 is involved. As the binding activity is crucial for translocation, then we examine the binding affinity of Sen1 to the single-stranded DNA via PAGE assay, revealing a stable binding of Sen1 with an occupied length of nucleic acids of less than 24 nt. In the presence of 1 µM ATP, we observe that Sen1 dynamically binds to and dissociates from the tailed duplex DNA in the single-molecule FRET assay. By titrating ATP concentrations from 1–500 µM, we observe a gradual decrease in the mean durations of Sen1 binding, suggesting an ATP-dependent binding affinity of Sen1 to single-stranded DNA. We then fit these mean durations to the classical Michaelis-Menten model and obtain a minimum binding duration of (0.18 ± 0.01) s at saturating ATP concentrations and Km of (13.1 ± 0.1) µM for the ATP-dependent binding of Sen1. This result is consistent with that from a translocation activity of Sen1. Taking into account the translocation length of the half of the single-stranded tail, i.e. 13 nt, a mean rate of 70 nt/s is estimated. Reversing the translocation direction, we observe an increase in the duration of Sen1 binding to the single-stranded tail, which suggests an impediment of DNA duplex in front of Sen1 translocation or the possible duplex DNA unwinding activity of Sen1. Our quantitative measurements on Sen1 translocation are helpful in deepening our understanding of the mechanism of eukaryotic transcription termination by Sen1.
      Corresponding author: Wang Shuang, shuangwang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 32071228, 12004420, 12004271, 12274308, 62135003), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDB37000000), the Youth Innovation Promotion Association of the Chinese Academy of Sciences, China (Grant No. 2021009), and the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 21202107221900001, 2022B0303040003).

    转录是生命体遗传信息传递的初始步骤, 由转录分子机器—RNA聚合酶在基因组DNA上做一维运动而实现[1-3]. 转录终止涉及转录分子机器从运动到暂停的状态转变, 由外源蛋白质机器或特征DNA序列(终止子)实现, 这是生命体调节转录行为的一种重要机制[4,5]. 在真核生命体内, 以酵母为例, 转录终止主要由两类蛋白质复合物与RNA聚合酶相互作用来实现: polyA介导的转录终止[6]和Sen1介导的转录终止[7,8]. polyA介导的转录终止, 一般发生于编码RNA转录, 由Rat1/Xrn2执行完成. Sen1介导的转录终止, 一般发生在非编码RNA转录, 由Nrd1/Nab3/Sen1(NNS)复合物实现. 有报道显示, Nrd1和Nab3特异性结合非编码RNA, 作为媒介招募Sen1, 而Sen1通过自身的机械运动以及和RNA聚合酶的相互作用来负责转录终止的发生[7,9-11].

    分子马达是负责生命体运动的纳米操纵器, 一般通过水解腺苷三磷酸(adenosine triphosphate, ATP)获得的能量来提供动力[12-14]. 解旋酶Sen1通过水解ATP获得能量, 实现打开核酸双链和在核酸上5'-3' 方向运动的功能. 不存在ATP时, Sen1以类似的亲和力结合单链RNA和单链DNA, 但存在ATP时, Sen1在RNA上的易位速率较慢, 与RNA结合更稳定[15,16]. Sen1能够解旋多种核酸底物, 包括DNA/DNA双链、RNA/RNA双链以及RNA/DNA杂合链等, 表现出较低的解旋长度[16]. Sen1催化水解ATP的功能域位于其解旋酶核心区域(约1095—1904的氨基酸位置, Sen1 helicase domain, 下文简称Sen1 HD). Sen1 HD与Sen1具有类似的水解ATP的功能和解旋DNA双链、RNA双链或RNA/DNA杂合链等多种核酸底物的功能[16]. 基于Sen1解旋功能, 当底物为单链核酸(单链DNA或RNA)时, 人们猜测Sen1也能够实现类似的一维机械运动, 该运动功能与Sen1的终止转录功能密切相关, 但具体机制目前尚不清楚. 另外, 在人体内存在与Sen1同源的转录终止因子——Senataxin (SETX), 其蛋白质的功能缺失与人类中枢神经系统疾病密切相关, 将导致共济失调与动眼神经的失用症2 (ataxia with oculomotor apraxia2, AOA2)和肌萎缩性脊髓侧索硬化症4 (amyotrophic lateral sclerosis, ALS4), 而这一系列疾病可能与SETX的转录终止功能密切相关[17]. 因此, 研究酵母体系的Sen1的一维机械运动, 将有助于理解酵母体系乃至人体内的转录终止功能机制, 对理解Senataxin相关疾病的发病机制有借鉴意义.

    单分子荧光共振能量转移(Förster resonance energy transfer, FRET)是一种纳米级精度检测分子相互作用的实验方法[18,19], 广泛应用于生物大分子间相互作用的研究. FRET发生原理是两种荧光分子偶极间的相互作用, 当其中一个荧光分子(称为供体, donor)的发射光谱与另外一个荧光分子(称为受体, acceptor)的吸收光谱重叠, 并且两个荧光分子的距离为2—8 nm时, 供体将通过共振方式把能量传递给受体, 致受体发光[18]. FRET效率与两荧光分子距离的6次方成反比, 具备高灵敏度探测微观距离变化的能力, 适用于测量生物大分子内部或分子间关键位置的相对距离变化, 实现对生物大分子微观运动和结构变化的高精度探测.

    本文采用单分子FRET方法表征了Sen1 HD与DNA底物的相互作用, 包括解旋双链DNA、结合并在单链DNA上行走等, 通过这些相互作用信息, 分析了Sen1 HD在单链DNA上的运动行为, 并解释了Sen1 HD在单链核酸上的行走机制.

    1) Sen1 HD重组表达载体构建: 首先从酿酒酵母BJ2168基因组DNA上PCR扩增出Sen1 HD (1095—1904氨基酸)基因片段; 该片段经过限制性内切酶消化后连接入pGEX6 P-1 (ΔGST)载体进行克隆. 同样, SNAP基因也经过PCR扩增、内切酶消化后, 克隆到Sen1 HD的C末端.

    2) Sen1 HD蛋白表达纯化: Sen1 HD的表达纯化步骤参考文献[20]. 简述如下, 将Sen1 HD重组载体转化到大肠杆菌感受态细胞BL21(DE3)中, 振荡过夜培养, 离心收集菌体. 对菌体重悬并裂解, 将上清液注入Ni2+亲和色谱. 之后使用PPX蛋白酶切割目标蛋白上将其释放到溶液环境, 进一步使用阴离子交换柱和分子筛纯化获得高纯度的Sen1 HD蛋白. 纯化后的Sen1 HD蛋白分装速冻之后在–80 ℃保存. Sen1 HD-SNAP的表达纯化流程与Sen1 HD类似, 其纯化过程中无PPX切割步骤, 因此保留了Sen1 HD蛋白C端的SNAP标签.

    3) Sen1 HD-SNAP蛋白荧光标记: 将Sen1 HD-SNAP蛋白与5倍物质的量的荧光染料SNAP-Surface649 (购于NEB公司)混合, 4 ℃孵育过夜. 随后用分子筛分离除去游离染料. 将荧光标记之后的蛋白分装速冻之后于–80 ℃保存. 荧光标记过程需要避光.

    使用7种不同序列的单链DNA (上海生工)来制备DNA底物用于Sen1 HD蛋白功能验证. 7种单链DNA的序列信息参见表1, 其中20-nt FAM ssDNA和70-nt ssDNA退火后形成具有50 nt (nucleotide, nt) 单链结合位点的20 bp双链DNA底物, 命名为5'-50ss-20duplex(图1(b)), 用于表征Sen1 HD蛋白解旋活性; Cy3-48ssDNA单链(图2(a))用于验证Sen1 HD蛋白与单链DNA的结合能力; 5'bio-60ssDNA和5'Cy3-34ssDNA退火后形成具有26 nt单链结合位点沿5'-3' 方向远离DNA岔口的34 bp双链DNA底物(5'-26ss-34duplex, 图3(a)), 用于表征Sen1 HD-SNAP649在单链DNA上的行走功能; 3' bio-60ssDNA和3' Cy3-34ssDNA退火后形成26 nt 单链结合位点沿5'-3' 方向靠近DNA岔口的34 bp双链DNA底物(3'-26ss-34duplex, 图5(a)), 用于判断Sen1 HD-SNAP649在单链DNA上行走的方向性.

    表 1  DNA底物序列信息及其应用
    Table 1.  DNA sequences and their applications.
    DNA底物名称DNA序列(5'-3')应用
    5'-50ss-20duplex20-nt FAM ssDNA: GTT GGG TAA CGC CAG GGA CG-3'FAM70-nt ssDNA: ATT ACG GAT TCA CTG GCC GTC GTT TTA CAA CGT CGT GAC TGG GAA AAA CGC GTC CCT GGC GTT ACC CAA CDNA退火后形成具有50 nt单链结合位点的20 bp 双链DNA底物, 用于表征Sen1 HD解旋活性
    Cy3-48ssDNAAGC TGG ATA CTT ACA GCC ATG GCT GCT GCG AAT ACT CCA TTC CAT CCC用于验证Sen1 HD与单链DNA的结合能力
    5'-26ss-34duplex5'bio-60ssDNA: 5'Biotin-GCC AGG AGG CTA GCA ACA GTC TTC ATT CAA CCG ACG TCA CAA TAG TGA GTA CCA ATA CCT5'Cy3-34ssDNA: 5'Cy3-TCG GTT GAA TGA AGA CTG TTG CTA GCC TCC TGG CDNA退火后形成具有26 nt 单链结合位点沿5'-3'方向远离DNA岔口的34 bp双链DNA底物, 用于表征Sen1 HD-SNAP649在单链DNA上的行走功能
    3'-26ss-34duplex3'bio-60ssDNA: TCC ATA ACC ATG AGT GAT AAC ACT GCA GCC AAC TTA CTT CTG ACA ACG ATC GGA GGA CCG-3'Biotin3'Cy3-34ssDNA: CGG TCC TCC GAT CGT TGT CAG AAG TAA GTT GGC T-3'Cy3DNA退火后形成26 nt 单链结合位点沿5'-3'方向靠近DNA岔口的34 bp双链DNA底物, 用于表征Sen1 HD-SNAP649在单链DNA上的行走方向
    下载: 导出CSV 
    | 显示表格
    图 1 聚丙烯酰胺凝胶电泳表征Sen1 HD解旋双链DNA活性 (a) Sen1解旋酶蛋白结构域模式图. (b) 实验方法示意图, Sen1 HD作用于5'-50ss-20duplex底物, 通过水解ATP获得能量来解开20-nt FAM ssDNA. (c) 对FAM荧光成像结果1道为20-nt FAM ssDNA的条带位置; 2道为5'-50ss-20duplex的条带位置; 3道为5'-50ss-20duplex与20-nt竞争ssDNA 30 ℃孵育20 min的结果, 无20-nt FAM ssDNA产生; 4道为5'-50ss-20duplex、20-nt竞争ssDNA和Sen1 HD 30 ℃孵育20 min的结果, 无20-nt FAM ssDNA产生; 5道为5'-50ss-20duplex, 20-nt竞争ssDNA, Sen1 HD, ATP条件下, 30 ℃孵育20 min的结果, 产生20-nt FAM ssDNA\r\nFig. 1. Characterization of Sen1 HD unwinding activity on double-stranded DNA via PAGE assay. (a) Domain pattern of Sen1. (b) Schematic of PAGE assay, Sen1 HD acts on the 5'-50ss-20duplex substrate to unwind the 20-nt FAM ssDNA by hydrolyzing ATP. (c) Fluorescence imaging of PAGE result: the first lane represents the band position of 20-nt FAM ssDNA; the second lane represents the band position of 5'-50ss-20duplex; the third lane represented 5'-50ss-20duplex with 20-nt competed ssDNA incubated at 30 ℃ for 20 min, but no 20-nt FAM ssDNA was produced; the fourth lane represented 5'-50ss-20duplex with 20-nt competed ssDNA and Sen1 HD incubated at 30 ℃ for 20 min, but no 20-nt FAM ssDNA was produced; the fifth lane, 20-nt FAM ssDNA was produced after incubation for 20 min at 30 ℃ under the condition of 5'-50ss-20duplex, 20-nt competed ssDNA, Sen1 HD and ATP.
    图 1  聚丙烯酰胺凝胶电泳表征Sen1 HD解旋双链DNA活性 (a) Sen1解旋酶蛋白结构域模式图. (b) 实验方法示意图, Sen1 HD作用于5'-50ss-20duplex底物, 通过水解ATP获得能量来解开20-nt FAM ssDNA. (c) 对FAM荧光成像结果1道为20-nt FAM ssDNA的条带位置; 2道为5'-50ss-20duplex的条带位置; 3道为5'-50ss-20duplex与20-nt竞争ssDNA 30 ℃孵育20 min的结果, 无20-nt FAM ssDNA产生; 4道为5'-50ss-20duplex、20-nt竞争ssDNA和Sen1 HD 30 ℃孵育20 min的结果, 无20-nt FAM ssDNA产生; 5道为5'-50ss-20duplex, 20-nt竞争ssDNA, Sen1 HD, ATP条件下, 30 ℃孵育20 min的结果, 产生20-nt FAM ssDNA
    Fig. 1.  Characterization of Sen1 HD unwinding activity on double-stranded DNA via PAGE assay. (a) Domain pattern of Sen1. (b) Schematic of PAGE assay, Sen1 HD acts on the 5'-50ss-20duplex substrate to unwind the 20-nt FAM ssDNA by hydrolyzing ATP. (c) Fluorescence imaging of PAGE result: the first lane represents the band position of 20-nt FAM ssDNA; the second lane represents the band position of 5'-50ss-20duplex; the third lane represented 5'-50ss-20duplex with 20-nt competed ssDNA incubated at 30 ℃ for 20 min, but no 20-nt FAM ssDNA was produced; the fourth lane represented 5'-50ss-20duplex with 20-nt competed ssDNA and Sen1 HD incubated at 30 ℃ for 20 min, but no 20-nt FAM ssDNA was produced; the fifth lane, 20-nt FAM ssDNA was produced after incubation for 20 min at 30 ℃ under the condition of 5'-50ss-20duplex, 20-nt competed ssDNA, Sen1 HD and ATP.

    采用常规的寡核苷酸退火方案来完成DNA底物退火. 具体过程如下: 首先将待退火的两种单链DNA干粉溶解为50 µM溶液备用; 随后取等摩尔浓度的两种单链DNA溶液加入退火缓冲液中进行水浴退火. 本文使用的退火缓冲溶液配方为10 mM Tris, 50 mM NaCl, pH 7.5. 水浴退火操作过程如下: 用水浴锅将烧杯中的水加热至95 ℃, 随后将装有退火体系的离心管放入95 ℃烧杯中, 维持5 min; 之后将烧杯从水浴锅中取出避光放置, 待其自然降温至室温后放于–20 ℃避光保存.

    使用非变性聚丙烯酰胺凝胶电泳法来表征Sen1 HD蛋白解旋双链DNA, 以及与单链DNA结合的能力, 凝胶电泳实验流程如下.

    1) 20%浓度聚丙烯酰胺凝胶制备: 取40%丙烯酰胺(29∶1)10 mL, 依次加入10×TBE (890 mM Tris, 20 mM EDTA pH 8.0, 890 mM Boric acid) 2 mL, 10% APS 160 µL, 待其充分混合后加入8 µL的四甲基乙二胺 (tetramethylethylenediamine, TEMED). 用纯水定容到20 mL后, 灌入垂直电泳胶框中, 室温静置凝胶30 min.

    2)非变性胶凝胶电泳: 将凝固后的胶框放入垂直电泳槽中, 随后缓慢倒入电泳缓冲液, 待冲洗加样孔、点样, 加入DNA marker之后, 进行100 V恒压电泳30 min.此处电泳缓冲液为10 mM Tris-HCl (pH 7.5), 50 mM NaCl, 1 mM MgCl2, 0.1 mg/mL BSA, 7.5 µM ZnCl2, 10%甘油, 0.5 mM DTT.

    3)电泳条带成像与分析: 恒压电泳结束后, 拆下胶框玻璃板, 将凝胶放入凝胶成像采集分析系统进行凝胶荧光成像, 观察并记录对照组与实验组的条带变化.

    本文共点样5种样品来验证Sen1 HD解旋双链DNA的活性, 分别是20 nM 20-nt FAM ssDNA (样品1); 20 nM 20-nt FAM ssDNA与70-nt ssDNA退火产物 (样品2); 20 nM 20-nt FAM ssDNA与70-nt ssDNA退火产物, 加入200 nM 20-nt ssDNA (样品3); 20 nM 20-nt FAM ssDNA与70-nt ssDNA退火产物, 加入200 nM 20-nt ssDNA, 加入30 nM Sen1 HD (样品4); 20 nM 20-nt FAM ssDNA与70-nt ssDNA退火产物, 200 nM 20-nt ssDNA, 30 nM Sen1 HD, 1 mM ATP (样品5). 其中, 前4组样品为对照组, 样品5为实验组. 所有样品均在30 ℃孵育30 min之后再点样, 进行凝胶电泳与荧光成像.

    本文采用Sen1 HD蛋白浓度梯度体系来验证Sen1 HD蛋白与单链DNA的结合能力, 具体是将0 nM Sen1 HD, 5 nM Sen1 HD, 25 nM Sen1 HD, 50 nM Sen1 HD蛋白分别与10 nM Cy3-48ssDNA混合定容后, 30 ℃孵育30 min之后再点样, 进行凝胶电泳与荧光成像.

    采用单分子FRET来验证Sen1 HD-SNAP649蛋白在单链DNA上的行走功能和方向性. 选用Cy3-SNAP649供体/受体荧光对来验证Sen1 HD蛋白与单链DNA的结合距离, 其中Cy3荧光标记在DNA底物上, SNAP649荧光标记在Sen1 HD蛋白上. 在532 nm激光器(Coherent Inc.)的激发下, Cy3供体分子发射荧光光子并激发与之邻近的SNAP649受体分子. 供体和受体荧光分子发射的荧光经过成像系统的分色镜分离, 然后在高灵敏度电子倍增CCD (EMCCA, Andor)上成像. 通过分析Cy3-SNAP649供体/受体荧光分子的强度变化来判断两者之间距离的变化, 进而判断Sen1 HD蛋白在单链DNA上的运动行为.

    使用底面修饰有Biotin-PEG的样品池来实现单分子密度DNA底物及Sen1 HD蛋白的表面固定[18]. 样品池制备过程主要分为3个部分.

    1)样品池玻璃片清洗: 将预先打孔的载玻片和盖玻片装入染色缸, 依次分别将二次水、丙酮、甲醇加入染色缸中对载玻片和盖玻片进行溶液超声清洗; 随后用二次水对其进行多次清洗, 之后向染色缸中加入1 M KOH超声清洗1.5 h; 再次使用二次水清洗后, 将载玻片浸泡在二次水中保存; 向盖玻片染色缸中加入乙醇钠(40 mg/mL NaOH、乙醇与二次水比例为7∶3), 超声清洗15 min, 之后再使用二次水超声清洗15 min.

    2)盖玻片表面修饰: 将清洗后的盖玻片用氮气吹干放入空置的APTES染色杠中, 120 ℃加热20 min, 随后取出放入真空干燥塔降温; 按照1 mL APTES 3-氨丙基三乙氧基硅烷、50 mL甲醇、2.5 mL冰醋酸的配比配制APTES溶液, 随后倒入已降至室温的APTES染色杠, 静置20 min进行玻璃表面预修饰, 之后用二次水超声清洗5 min; 之后将经过预修饰的盖玻片浸没在m-PEG和Biotin-PEG (100∶1配比)稀释的高盐溶液中, 避光修饰2.5 h, 得到m-PEG/Biotin-PEG修饰的疏水盖玻片表面, 该表面在实现链霉亲和素特异性结合的同时, 有效避免杂质的非特异性吸附. 表面修饰完成之后, 盖玻片再次用二次水冲洗, 之后用氮气吹干, 装到50 mL 微量离心管中, 抽真空保存于–20 ℃备用.

    3)样品池组装: 把封口膜切割成通道结构, 随后将其放入上述处理过的载玻片和盖玻片之间热压, 形成闭合通道; 之后在载玻片的打孔位置连接进/出液管, 完成样品池组装. 上述过程详情可以见参考文献[21].

    样品池准备完成之后, 将其放到全内反射荧光(total internal reflection fluorescence, TIRF)显微镜的载物台上, 进行DNA底物及Sen1 HD蛋白上样. 首先在样品池中加入0.1 mg/mL链酶亲和素孵育2 min; 随后用缓冲液冲掉未连接的链霉亲和素, 再将40 pM生物素标记的DNA底物加入到样品池中孵育1 min并冲掉多余的DNA; 之后加入Sen1 HD-SNAP649、不同浓度的ATP、除氧体系(2.5 mM protocatechuic acid, PCA; 50 nM protocatechuate-3, 4-dioxygenase, PCD, pH 7.5). 若无特殊说明, 单分子荧光实验使用的缓冲液均为50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 8 mM MgCl2, 0.5 mg/mL BSA, 7.5 µM ZnCl2, 体积分数为0.1%的Tween 20, 10 mg/mL Trolox.

    使用自有的Matlab代码分别提取经过背景矫正的供体/受体荧光信号来进行单分子荧光分析, 之后通过Matlab程序对提取的单分子FRET信号持续的时间进行动力学分析. 所有的动力学分析拟合均使用Igor Pro (WaveMetrics)来实现.

    Sen1是一种SF1B家族解旋酶[16,22,23], 能够利用ATP水解提供的化学能, 沿5'-3' 的核酸方向行走并解开双链DNA, 双链RNA以及DNA/RNA杂合链, 该解旋活性被认为与其实现转录终止功能密切相关. Sen1的核心区域, 即Sen1 HD, 具备类似的解旋酶活性和转录终止活性, 被广泛用于Sen1介导的转录终止相关的研究中. 本文首先运用传统生化方法验证Sen1 HD的解旋活性. 首先将70-nt ssDNA与FAM荧光标记的20-nt互补的ssDNA退火, 制备具有50 nt单链结合位点的20 bp双链DNA底物, 称为5'-50ss-20duplex, 该50 nt单链DNA位于5'末端, 可结合Sen1 HD(图1(b)). 在20 µL反应体系中, 5'-50ss-20duplex底物的浓度为20 nM, 加入1 mM ATP, 30 nM Sen1 HD和200 nM 20-nt竞争ssDNA (与20-nt FAM ssDNA序列相同, 无FAM标记). 在30 ℃反应20 min. 借助20%聚丙烯酰胺凝胶电泳(PAGE), 对20-nt FAM ssDNA的迁移率进行表征, 电泳结果如图1(c)所示, 迁移速度慢的是底物5'-50ss-20duplex, 迁移速度快的是20-nt FAM ssDNA. 图1(c)中前4道为对照组, 第5道为实验组, 实验组结果显示DNA底物中的20-nt FAM ssDNA与70-nt ssDNA分离, 说明在1 mM ATP条件下, Sen1 HD能够解开5'-50ss-20duplex底物, Sen1 HD具有解旋双链DNA的活性. 相比于对照组结果, Sen1 HD的解旋活性依赖于ATP水解, 即无ATP条件下未观察到Sen1 HD的解旋活性.

    Sen1 HD的解旋活性蕴含结合单链DNA并在其上迁移的能力, 因此, 进一步表征了Sen1 HD和单链DNA的结合能力. 首先, 设计并合成了Cy3荧光标记的48 nt单链DNA(Cy3-48ssDNA), 运用聚丙烯酰胺凝胶电泳观测不同Sen1 HD浓度下, Cy3荧光的迁移率, 从而表征Sen1 HD与单链DNA的结合能力. 在20 µL反应体系中, Cy3-48ssDNA浓度为10 nM, 分别与浓度梯度为0, 5, 25和50 nM的Sen1 HD在30 ℃孵育30 min, 随后在聚丙烯酰胺凝胶电泳下进行迁移, 结果如图2(b)所示. 随Sen1 HD浓度增加, Cy3-48ssDNA条带逐渐向高分子量区域跳变. Sen1 HD浓度为0或5 nM时, Cy3-48ssDNA条带保持不变; Sen1 HD浓度为25 nM时, Cy3-48ssDNA条带略有减少, 并且Cy3-48ssDNA条带上方出现一条新的条带, 说明Cy3-48ssDNA结合了一个Sen1 HD分子, 导致Cy3-48ssDNA条带位置迁移; Sen1 HD浓度为50 nM时, Cy3-48ssDNA条带进一步减少, 并且Cy3-48ssDNA条带上方出现两个条带, 其中迁移速度较快的条带表明Cy3-48ssDNA结合了一个Sen1 HD分子, 迁移速度较慢的条带表明Cy3-48ssDNA结合了两个Sen1 HD分子, 导致条带分层迁移. 综上, Sen1 HD具备结合单链DNA的能力, 并且其结合单链DNA的长度≤ 24 nt.

    图 2 Sen1 HD与Cy3-48ssDNA结合的PAGE实验 (a) Sen1 HD与Cy3-48ssDNA结合示意图. (b) Cy3荧光成像结果. 第1道为Cy3-48ssDNA原始长度; 第2道为5 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果; 第3道为25 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果; 第4道为50 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果\r\nFig. 2. Sen1 HD binding activity to Cy3-48ssDNA characterized via PAGE assay. (a) Schematic of Sen1 HD binding to Cy3-48ssDNA. (b) Fluorescence imaging of Cy3 fluorophore: the first lane represents the original length of Cy3-48ssDNA; the second lane represents the result of 5 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 min; the third lane represents the result of 25 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 minutes; the fourth lane represents the result of 50 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 min.
    图 2  Sen1 HD与Cy3-48ssDNA结合的PAGE实验 (a) Sen1 HD与Cy3-48ssDNA结合示意图. (b) Cy3荧光成像结果. 第1道为Cy3-48ssDNA原始长度; 第2道为5 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果; 第3道为25 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果; 第4道为50 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果
    Fig. 2.  Sen1 HD binding activity to Cy3-48ssDNA characterized via PAGE assay. (a) Schematic of Sen1 HD binding to Cy3-48ssDNA. (b) Fluorescence imaging of Cy3 fluorophore: the first lane represents the original length of Cy3-48ssDNA; the second lane represents the result of 5 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 min; the third lane represents the result of 25 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 minutes; the fourth lane represents the result of 50 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 min.

    下一步, 运用单分子FRET方法表征了Sen1 HD在单链DNA上的行走功能. 首先将5' bio-60ssDNA与5' 端Cy3荧光标记的34-nt互补的ssDNA退火, 制备具有26 nt单链结合位点的34 bp双链DNA底物, 称为5'-26ss-34duplex, 该26 nt单链DNA位于3' 末端, 可结合Sen1 HD, Sen1 HD在26 nt单链DNA上沿5'-3' 方向远离DNA岔口处行走. 5'-26ss-34duplex的5' 末端标记生物素(Biotin), 用于连接聚乙二醇(PEG)和链霉亲和素(Streptavidin)修饰的玻璃表面(图3). 在532 nm激光照射下, 该DNA底物展现出稳定的Cy3荧光. 当引入SNAP649荧光标记的Sen1 HD(Sen1 HD-SNAP649)和1 µM ATP时, 如图3(a)所示, Cy3荧光光强降低, SNAP649荧光发生同步且相反的光强变化. 这表明Sen1 HD与单链DNA结合, Cy3和SNAP649荧光分子之间发生了能量转移现象, 即FRET(图3(b)), 当两种荧光光强变化持续一定时间后, 恢复到初始状态, 表明Sen1 HD与单链DNA解离, 当Cy3荧光再次降低, SNAP649荧光再次发生同步切相反的光强变化, 表明Sen1与单链DNA结合之后再次解离的过程. 该实验现象说明Sen1 HD-SNAP649结合到DNA底物并与之发生相互作用, 我们对该作用时间(即FRET持续时间)进行分析, 其结果符合单指数分布. 运用单指数方程对该时间分布进行拟合, 得到1 µM ATP条件下, Sen1 HD-SNAP649在DNA底物上作用的平均时间, t0 = (2.42 ± 0.20) s (SEM), 如图3(c)所示. 当采用齐末端双链DNA底物进行对照实验, 未观察到类似的FRET现象, 说明Sen1 HD-SNAP649作用于DNA底物的单链区域.

    图 3 单分子FRET方法表征Sen1 HD-SNAP649在5'-26ss-34duplex上的行走功能(1 µM ATP条件下) (a) 单分子FRET方法示意图, 在5'-26ss-34duplex结构中, 岔口5'端标有Cy3荧光, Sen1 HD上标有SNAP649荧光; (b) Sen1 HD-SNAP649行走的典型曲线; (c) FRET持续时间的分布图\r\nFig. 3. Sen1 HD-SNAP649 translocation activity on 5'-26ss-34duplex characterized via single-molecule FRET assay under 1 μM ATP condition: (a) Schematic for the assay, in the 5'-26ss-34duplex construct, the 5' end of the fork is labeled with Cy3, and Sen1 HD is labeled with SNAP649; (b) a typical trajectory representing Sen1 HD-SNAP649 translocation on DNA substrate; (c) distribution of the FRET dwell times corresponding to Sen1 HD-SNAP649 translocation.
    图 3  单分子FRET方法表征Sen1 HD-SNAP649在5'-26ss-34duplex上的行走功能(1 µM ATP条件下) (a) 单分子FRET方法示意图, 在5'-26ss-34duplex结构中, 岔口5'端标有Cy3荧光, Sen1 HD上标有SNAP649荧光; (b) Sen1 HD-SNAP649行走的典型曲线; (c) FRET持续时间的分布图
    Fig. 3.  Sen1 HD-SNAP649 translocation activity on 5'-26ss-34duplex characterized via single-molecule FRET assay under 1 μM ATP condition: (a) Schematic for the assay, in the 5'-26ss-34duplex construct, the 5' end of the fork is labeled with Cy3, and Sen1 HD is labeled with SNAP649; (b) a typical trajectory representing Sen1 HD-SNAP649 translocation on DNA substrate; (c) distribution of the FRET dwell times corresponding to Sen1 HD-SNAP649 translocation.

    进一步, 为了验证Sen1 HD在单链DNA上的行走功能, 进行了ATP浓度梯度实验, 即采用l, 10, 20, 100和500 µM ATP浓度, 利用单分子FRET测得在不同ATP条件下, Sen1 HD-SNAP649在5'-26ss-34duplex上平均作用时间, 分别为t1 = (2.42±0.20) s, t2 = (0.43±0.05) s, t3 = (0.36±0.04) s, t4 = (0.21±0.03) s, t5 = (0.16±0.02) s. 结果如图4所示, 随着ATP浓度增加, Sen1 HD-SNAP649在5'-26ss-34duplex上的平均作用时间减少, 表明Sen1 HD-SNAP649在单链DNA上平均作用时间受ATP浓度调控, 证明 Sen1 HD具有在单链DNA上的行走功能. 对该作用时间与ATP浓度的倒数进行拟合(t=Kmt01[ATP]+t0), 得到t0 = (0.18±0.01) s和Km = (13.1±0.1) µM. 考虑Sen1 HD结合单链DNA的最概然位置是26 nt的中间位置, 可以估算出Sen1 HD在单链DNA上的平均行走速率为13 nt/0.18 s = 72 nt/s.

    图 4 Sen1 HD-SNAP649行走功能的米氏动力学分析\r\nFig. 4. Translocation activity of Sen1 HD-SNAP649 analyzed via the classical Michaelis-Menten model.
    图 4  Sen1 HD-SNAP649行走功能的米氏动力学分析
    Fig. 4.  Translocation activity of Sen1 HD-SNAP649 analyzed via the classical Michaelis-Menten model.

    改变3.3节研究所用DNA底物中单链DNA的方向, 首先将3' bio-60ssDNA与3' 端Cy3荧光标记的34-nt互补的ssDNA退火, 制备具有26 nt 单链结合位点的34 bp双链DNA底物, 称为3'-26ss-34duplex, 该26 nt单链DNA位于5' 末端, 可结合Sen1 HD, Sen1 HD在26 nt单链DNA上沿5'-3' 方向靠近DNA岔口处行走(图5(a)). 在反应体系中加入Sen1 HD-SNAP649和1 µM ATP时, 观察到图5(b)的FRET现象, 其中, 有FRET平稳变化过程, 也有FRET渐变过程, 对该FRET持续时间进行分析并用单指数方程进行拟合, 得到了平均作用时间为t0 = (3.57±0.57) s (SEM), 大于3.3节中相同ATP浓度下的平均作用时间, 说明本节中Sen1 HD-SNAP649朝向DNA岔口运动时, 岔口的存在可能阻碍Sen1 HD-SNAP649解离, 也有可能Sen1 HD-SNAP649在岔口处对DNA解旋, 使得与DNA底物的作用时间有所增加.

    图 5 单分子FRET方法表征Sen1 HD-SNAP649在3'-26ss-34duplex上的行走(1 µM ATP条件) (a) 实验示意图, 在3'-26ss-34duplex结构中, 岔口3' 端标有Cy3荧光, Sen1 HD上标有SNAP649荧光; (b) Sen1 HD-SNAP649行走的典型曲线; (c) FRET持续时间的分布图\r\nFig. 5. Translocation activity of Sen1 HD-SNAP649 on 3'-26ss-34duplex characterized via single-molecule FRET assay under 1 μM ATP condition: (a) Schematic of the assay, and in the construct of 3'-26ss-34duplex, the 3' end of the fork is labeled with Cy3, and Sen1 HD is labeled with SNAP649; (b) a typical trajectory representing Sen1 HD-SNAP649 translocation; (c) histogram of the FRET dwell times for Sen1 HD-SNAP649 translocation.
    图 5  单分子FRET方法表征Sen1 HD-SNAP649在3'-26ss-34duplex上的行走(1 µM ATP条件) (a) 实验示意图, 在3'-26ss-34duplex结构中, 岔口3' 端标有Cy3荧光, Sen1 HD上标有SNAP649荧光; (b) Sen1 HD-SNAP649行走的典型曲线; (c) FRET持续时间的分布图
    Fig. 5.  Translocation activity of Sen1 HD-SNAP649 on 3'-26ss-34duplex characterized via single-molecule FRET assay under 1 μM ATP condition: (a) Schematic of the assay, and in the construct of 3'-26ss-34duplex, the 3' end of the fork is labeled with Cy3, and Sen1 HD is labeled with SNAP649; (b) a typical trajectory representing Sen1 HD-SNAP649 translocation; (c) histogram of the FRET dwell times for Sen1 HD-SNAP649 translocation.

    应用单分子FRET和凝胶电泳迁移方法, 研究了解旋酶Sen1 HD与多种DNA底物之间的相互作用, 验证了Sen1 HD具备解旋双链DNA和结合单链DNA的功能, 并且在ATP提供能量的情况下, Sen1 HD能够在单链DNA行走, 行走速率随ATP浓度变化而变化, 符合经典米氏动力学模型. 估算得出饱和ATP浓度下, Sen1 HD在单链DNA上行走的平均速率为70 nt/s. 该速率显著大于酵母体系中RNA聚合酶的运动速率(约16 bp/s), 从简单的运动学角度考虑, Sen1具备追上RNA聚合酶的功能. 在转录终止过程中, 人们发现Sen1与RNA聚合酶之间的行走速率差别, 显著影响酵母体系的转录终止效率, 即提出了Sen1与RNA聚合酶相互竞争的工作机制[24]. 研究结果为该转录终止机制提供了运动速率方面的实验证据, 有助于深化对酵母体系转录终止机制的理解.

    [1]

    Roeder R G 2019 Nat. Struct. Mol. Biol. 26 783Google Scholar

    [2]

    Jonkers I, Lis J T 2015 Nat. Rev. Mol. Cell. Biol. 16 167Google Scholar

    [3]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R, Block S M 2005 Nature 438 460Google Scholar

    [4]

    You L, Omollo E O, Yu C, Mooney R A, Shi J, Shen L, Wu X, Wen A, He D, Zeng Y, Feng Y, Landick R, Zhang Y 2023 Nature 613 783Google Scholar

    [5]

    Molodtsov V, Wang C, Firlar E, Kaelber J T, Ebright R H 2023 Nature 614 367Google Scholar

    [6]

    West S, Gromak N, Proudfoot N J 2004 Nature 432 522Google Scholar

    [7]

    Porrua O, Libri D 2013 Nat. Struct. Mol. Biol. 20 884Google Scholar

    [8]

    Wang S, Han Z, Libri D, Porrua O, Strick T R 2019 Nat. Commun. 10 1545Google Scholar

    [9]

    Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A 2008 Nat. Struct. Mol. Biol. 15 795Google Scholar

    [10]

    Arndt K M, Reines D 2015 Annu. Rev. Biochem. 84 381Google Scholar

    [11]

    Rondón A G, Mischo H E, Kawauchi J, Proudfoot N J 2009 Mol. Cell. 36 88Google Scholar

    [12]

    Jia X, Li Y, Wang T, Bi L, Guo L, Chen Z, Zhang X, Ye S, Chen J, Yang B, Sun B 2023 Embo. J. 42 e111703Google Scholar

    [13]

    Saper G, Hess H 2020 Chem. Rev. 120 288Google Scholar

    [14]

    Nishizaka T 2010 Adv. Biochem. Eng. Biotechnol. 119 3Google Scholar

    [15]

    Martin-Tumasz S, Brow D A 2015 J. Biol. Chem. 290 22880Google Scholar

    [16]

    Han Z, Libri D, Porrua O 2017 Nucleic. Acids. Res. 45 1355Google Scholar

    [17]

    Skourti-Stathaki K, Proudfoot N J, Gromak N 2011 Mol. Cell. 42 794Google Scholar

    [18]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. USA 93 6264Google Scholar

    [19]

    Maki A H, Co T 1976 Biochemistry 15 1229Google Scholar

    [20]

    Leonaitė B, Han Z, Basquin J, Bonneau F, Libri D, Porrua O, Conti E 2017 Embo. J. 36 1590Google Scholar

    [21]

    Shi J, Wang F, Li F, Wang L, Xiong Y, Wen A, Jin Y, Jin S, Gao F, Feng Z, Li J, Zhang Y, Shang Z, Wang S, Feng Y, Lin W 2022 Nucleic. Acids. Res. 50 5974Google Scholar

    [22]

    Fiorini F, Bagchi D, Le Hir H, Croquette V 2015 Nat. Commun. 6 7581Google Scholar

    [23]

    Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H, Conti E 2011 Mol. Cell. 41 693Google Scholar

    [24]

    Hazelbaker D Z, Marquardt S, Wlotzka W, Buratowski S 2013 Mol. Cell. 49 55Google Scholar

  • 图 1  聚丙烯酰胺凝胶电泳表征Sen1 HD解旋双链DNA活性 (a) Sen1解旋酶蛋白结构域模式图. (b) 实验方法示意图, Sen1 HD作用于5'-50ss-20duplex底物, 通过水解ATP获得能量来解开20-nt FAM ssDNA. (c) 对FAM荧光成像结果1道为20-nt FAM ssDNA的条带位置; 2道为5'-50ss-20duplex的条带位置; 3道为5'-50ss-20duplex与20-nt竞争ssDNA 30 ℃孵育20 min的结果, 无20-nt FAM ssDNA产生; 4道为5'-50ss-20duplex、20-nt竞争ssDNA和Sen1 HD 30 ℃孵育20 min的结果, 无20-nt FAM ssDNA产生; 5道为5'-50ss-20duplex, 20-nt竞争ssDNA, Sen1 HD, ATP条件下, 30 ℃孵育20 min的结果, 产生20-nt FAM ssDNA

    Figure 1.  Characterization of Sen1 HD unwinding activity on double-stranded DNA via PAGE assay. (a) Domain pattern of Sen1. (b) Schematic of PAGE assay, Sen1 HD acts on the 5'-50ss-20duplex substrate to unwind the 20-nt FAM ssDNA by hydrolyzing ATP. (c) Fluorescence imaging of PAGE result: the first lane represents the band position of 20-nt FAM ssDNA; the second lane represents the band position of 5'-50ss-20duplex; the third lane represented 5'-50ss-20duplex with 20-nt competed ssDNA incubated at 30 ℃ for 20 min, but no 20-nt FAM ssDNA was produced; the fourth lane represented 5'-50ss-20duplex with 20-nt competed ssDNA and Sen1 HD incubated at 30 ℃ for 20 min, but no 20-nt FAM ssDNA was produced; the fifth lane, 20-nt FAM ssDNA was produced after incubation for 20 min at 30 ℃ under the condition of 5'-50ss-20duplex, 20-nt competed ssDNA, Sen1 HD and ATP.

    图 2  Sen1 HD与Cy3-48ssDNA结合的PAGE实验 (a) Sen1 HD与Cy3-48ssDNA结合示意图. (b) Cy3荧光成像结果. 第1道为Cy3-48ssDNA原始长度; 第2道为5 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果; 第3道为25 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果; 第4道为50 nM Sen1 HD与Cy3-48ssDNA 30 ℃孵育30 min的结果

    Figure 2.  Sen1 HD binding activity to Cy3-48ssDNA characterized via PAGE assay. (a) Schematic of Sen1 HD binding to Cy3-48ssDNA. (b) Fluorescence imaging of Cy3 fluorophore: the first lane represents the original length of Cy3-48ssDNA; the second lane represents the result of 5 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 min; the third lane represents the result of 25 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 minutes; the fourth lane represents the result of 50 nM Sen1 HD incubation with Cy3-48ssDNA at 30 ℃ for 30 min.

    图 3  单分子FRET方法表征Sen1 HD-SNAP649在5'-26ss-34duplex上的行走功能(1 µM ATP条件下) (a) 单分子FRET方法示意图, 在5'-26ss-34duplex结构中, 岔口5'端标有Cy3荧光, Sen1 HD上标有SNAP649荧光; (b) Sen1 HD-SNAP649行走的典型曲线; (c) FRET持续时间的分布图

    Figure 3.  Sen1 HD-SNAP649 translocation activity on 5'-26ss-34duplex characterized via single-molecule FRET assay under 1 μM ATP condition: (a) Schematic for the assay, in the 5'-26ss-34duplex construct, the 5' end of the fork is labeled with Cy3, and Sen1 HD is labeled with SNAP649; (b) a typical trajectory representing Sen1 HD-SNAP649 translocation on DNA substrate; (c) distribution of the FRET dwell times corresponding to Sen1 HD-SNAP649 translocation.

    图 4  Sen1 HD-SNAP649行走功能的米氏动力学分析

    Figure 4.  Translocation activity of Sen1 HD-SNAP649 analyzed via the classical Michaelis-Menten model.

    图 5  单分子FRET方法表征Sen1 HD-SNAP649在3'-26ss-34duplex上的行走(1 µM ATP条件) (a) 实验示意图, 在3'-26ss-34duplex结构中, 岔口3' 端标有Cy3荧光, Sen1 HD上标有SNAP649荧光; (b) Sen1 HD-SNAP649行走的典型曲线; (c) FRET持续时间的分布图

    Figure 5.  Translocation activity of Sen1 HD-SNAP649 on 3'-26ss-34duplex characterized via single-molecule FRET assay under 1 μM ATP condition: (a) Schematic of the assay, and in the construct of 3'-26ss-34duplex, the 3' end of the fork is labeled with Cy3, and Sen1 HD is labeled with SNAP649; (b) a typical trajectory representing Sen1 HD-SNAP649 translocation; (c) histogram of the FRET dwell times for Sen1 HD-SNAP649 translocation.

    表 1  DNA底物序列信息及其应用

    Table 1.  DNA sequences and their applications.

    DNA底物名称DNA序列(5'-3')应用
    5'-50ss-20duplex20-nt FAM ssDNA: GTT GGG TAA CGC CAG GGA CG-3'FAM70-nt ssDNA: ATT ACG GAT TCA CTG GCC GTC GTT TTA CAA CGT CGT GAC TGG GAA AAA CGC GTC CCT GGC GTT ACC CAA CDNA退火后形成具有50 nt单链结合位点的20 bp 双链DNA底物, 用于表征Sen1 HD解旋活性
    Cy3-48ssDNAAGC TGG ATA CTT ACA GCC ATG GCT GCT GCG AAT ACT CCA TTC CAT CCC用于验证Sen1 HD与单链DNA的结合能力
    5'-26ss-34duplex5'bio-60ssDNA: 5'Biotin-GCC AGG AGG CTA GCA ACA GTC TTC ATT CAA CCG ACG TCA CAA TAG TGA GTA CCA ATA CCT5'Cy3-34ssDNA: 5'Cy3-TCG GTT GAA TGA AGA CTG TTG CTA GCC TCC TGG CDNA退火后形成具有26 nt 单链结合位点沿5'-3'方向远离DNA岔口的34 bp双链DNA底物, 用于表征Sen1 HD-SNAP649在单链DNA上的行走功能
    3'-26ss-34duplex3'bio-60ssDNA: TCC ATA ACC ATG AGT GAT AAC ACT GCA GCC AAC TTA CTT CTG ACA ACG ATC GGA GGA CCG-3'Biotin3'Cy3-34ssDNA: CGG TCC TCC GAT CGT TGT CAG AAG TAA GTT GGC T-3'Cy3DNA退火后形成26 nt 单链结合位点沿5'-3'方向靠近DNA岔口的34 bp双链DNA底物, 用于表征Sen1 HD-SNAP649在单链DNA上的行走方向
    DownLoad: CSV
  • [1]

    Roeder R G 2019 Nat. Struct. Mol. Biol. 26 783Google Scholar

    [2]

    Jonkers I, Lis J T 2015 Nat. Rev. Mol. Cell. Biol. 16 167Google Scholar

    [3]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R, Block S M 2005 Nature 438 460Google Scholar

    [4]

    You L, Omollo E O, Yu C, Mooney R A, Shi J, Shen L, Wu X, Wen A, He D, Zeng Y, Feng Y, Landick R, Zhang Y 2023 Nature 613 783Google Scholar

    [5]

    Molodtsov V, Wang C, Firlar E, Kaelber J T, Ebright R H 2023 Nature 614 367Google Scholar

    [6]

    West S, Gromak N, Proudfoot N J 2004 Nature 432 522Google Scholar

    [7]

    Porrua O, Libri D 2013 Nat. Struct. Mol. Biol. 20 884Google Scholar

    [8]

    Wang S, Han Z, Libri D, Porrua O, Strick T R 2019 Nat. Commun. 10 1545Google Scholar

    [9]

    Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A 2008 Nat. Struct. Mol. Biol. 15 795Google Scholar

    [10]

    Arndt K M, Reines D 2015 Annu. Rev. Biochem. 84 381Google Scholar

    [11]

    Rondón A G, Mischo H E, Kawauchi J, Proudfoot N J 2009 Mol. Cell. 36 88Google Scholar

    [12]

    Jia X, Li Y, Wang T, Bi L, Guo L, Chen Z, Zhang X, Ye S, Chen J, Yang B, Sun B 2023 Embo. J. 42 e111703Google Scholar

    [13]

    Saper G, Hess H 2020 Chem. Rev. 120 288Google Scholar

    [14]

    Nishizaka T 2010 Adv. Biochem. Eng. Biotechnol. 119 3Google Scholar

    [15]

    Martin-Tumasz S, Brow D A 2015 J. Biol. Chem. 290 22880Google Scholar

    [16]

    Han Z, Libri D, Porrua O 2017 Nucleic. Acids. Res. 45 1355Google Scholar

    [17]

    Skourti-Stathaki K, Proudfoot N J, Gromak N 2011 Mol. Cell. 42 794Google Scholar

    [18]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. USA 93 6264Google Scholar

    [19]

    Maki A H, Co T 1976 Biochemistry 15 1229Google Scholar

    [20]

    Leonaitė B, Han Z, Basquin J, Bonneau F, Libri D, Porrua O, Conti E 2017 Embo. J. 36 1590Google Scholar

    [21]

    Shi J, Wang F, Li F, Wang L, Xiong Y, Wen A, Jin Y, Jin S, Gao F, Feng Z, Li J, Zhang Y, Shang Z, Wang S, Feng Y, Lin W 2022 Nucleic. Acids. Res. 50 5974Google Scholar

    [22]

    Fiorini F, Bagchi D, Le Hir H, Croquette V 2015 Nat. Commun. 6 7581Google Scholar

    [23]

    Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H, Conti E 2011 Mol. Cell. 41 693Google Scholar

    [24]

    Hazelbaker D Z, Marquardt S, Wlotzka W, Buratowski S 2013 Mol. Cell. 49 55Google Scholar

  • [1] Zhang Zhi-Peng, Liu Shuai, Zhang Yu-Qiong, Xiong Ying, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics. Acta Physica Sinica, 2023, 72(21): 218701. doi: 10.7498/aps.72.20231089
    [2] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [3] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [4] Li Dong-Yang, Zhang Yuan-Xian, Ou Yong-Xiong, Pu Xiao-Yun. Optofluidic fluorescence resonance energy transfer lasing in a polydimethylsiloxane microfluidic channel. Acta Physica Sinica, 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [5] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [6] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [7] Lü Xi-Ming, Li Hui, You Jing, Li Wei, Wang Peng-Ye, Li Ming, Xi Xu-Guang, Dou Shuo-Xing. An optimization algorithm for single-molecule fluorescence resonance (smFRET) data processing. Acta Physica Sinica, 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [8] Wang Dan-Dan, Li Zhi-Jian. Resonance transmission of one-dimensional quantum walk with phase defects. Acta Physica Sinica, 2016, 65(6): 060301. doi: 10.7498/aps.65.060301
    [9] Hu Yao-Guang, Wang Sheng-Jun, Jin Tao, Qu Shi-Xian. Biased random walks in the scale-free networks with the disassortative degree correlation. Acta Physica Sinica, 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [10] Liu Yan-Mei, Chen Han-Wu, Liu Zhi-Hao, Xue Xi-Ling, Zhu Wan-Ning. Scattering quantum walk search algorithm on star graph. Acta Physica Sinica, 2015, 64(1): 010301. doi: 10.7498/aps.64.010301
    [11] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [12] He Zhi-Cong, Li Fang, Li Mu-Ye, Wei Lai. Fluorescence resonance energy transfer between CdTe quantum dots and copper phthalocyanine. Acta Physica Sinica, 2015, 64(4): 046802. doi: 10.7498/aps.64.046802
    [13] Gong Ming-Yan. Rotational excitation of He-BH collision system. Acta Physica Sinica, 2011, 60(7): 073401. doi: 10.7498/aps.60.073401
    [14] Lin Fang, Bao Jing-Dong. Approach of continuous time random walk model to anomalous diffusion. Acta Physica Sinica, 2008, 57(2): 696-702. doi: 10.7498/aps.57.696
    [15] Wu Chun-Hong, Liu Peng-Yi, Hou Lin-Tao, Li Yan-Wu. The energy transfer in phosphorescent dye PtOEP doped organic molecule Alq. Acta Physica Sinica, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [16] Zheng Yong-Zhen, Feng Xing-Ya, Zheng Yin-Jia, Guo Gan-Cheng, Xu De-Ming, Deng Zhong-Chao. Potential safe termination by laser ablation of high-Z impurity in the HL-1M tokamak. Acta Physica Sinica, 2005, 54(6): 2809-2813. doi: 10.7498/aps.54.2809
    [17] PAN DUO-HAI, MA YONG-HONG. A STUDY OF SURFACE-ENHANCED ENERGY TRANSFER EFFECT BETWEEN MOLECULES. Acta Physica Sinica, 1995, 44(12): 1914-1920. doi: 10.7498/aps.44.1914
    [18] TANG KUN-FA, HU JIA-ZHEN. ADSORPTION OF A SELF-AVOIDING WALK ON FRACTAL SPACES. Acta Physica Sinica, 1988, 37(6): 1014-1017. doi: 10.7498/aps.37.1014
    [19] GAO WEN-BIN, SHEN YU-QI, J. H?GER, W. KRIEGER. VIBRATIONAL ENERGY TRANSFER STUDY OF DICHLOROMETHANE (CH2Cl2) BY LASER INDUCED FLUORESCENCE METHOD. Acta Physica Sinica, 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
    [20] ТЕОРИЯ ВОЗБУЖДЕНИЯ МОЛЕКУЛ Н-АЛКАНОВ И ВОПРОСЫ МИГРАЦИИ ЭНЕРГИИ ВНУТРИ МОЛЕКУЛЫ. Acta Physica Sinica, 1964, 20(5): 436-443. doi: 10.7498/aps.20.436
Metrics
  • Abstract views:  5177
  • PDF Downloads:  114
Publishing process
  • Received Date:  13 February 2023
  • Accepted Date:  08 March 2023
  • Available Online:  28 March 2023
  • Published Online:  20 May 2023

/

返回文章
返回