Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation and application of novel Chua multi-scroll chaotic attractors

Jia Mei-Mei Jiang Hao-Gang Li Wen-Jing

Citation:

Generation and application of novel Chua multi-scroll chaotic attractors

Jia Mei-Mei, Jiang Hao-Gang, Li Wen-Jing
PDF
HTML
Get Citation
  • Chaos has great potential applications in engineering fields, such as secure communication and digital encryption. Since the double-scroll Chua’s circuit was developed first by Chua, it has quickly become a paradigm to study the double-scroll chaotic attractors. Compared with the conventional double-scroll chaotic attractors, the multi-scroll chaotic attractors have complex structures and rich nonlinear dynamical behaviors. The multi-scroll chaotic attractors have been applied to various chaos-based information technologies, such as secure communication and chaotic cryptanalysis. Hence, the generation of the multi-scroll chaotic attractors has become a hot topic in research field of chaos at present. In this paper, a novel Chua multi-scroll chaotic system is constructed by using a logarithmic function series. The nonlinear dynamical behaviors of the novel Chua multi-scroll chaotic system are analyzed, including symmetry, invariance, equilibrium points, the largest Lyapunov exponent, etc. The existence of chaos is confirmed by theoretical analyses and numerical simulations. The results show that the rich Chua multi-scroll chaotic attractors can be generated by combining the logarithmic function series with the novel Chua double-scroll chaotic system. The generation mechanism of the Chua multi-scroll chaotic attractors is that the saddle-focus equilibrium points of index 2 are used to generate the scrolls, and the saddle-focus equilibrium points of index 1 are used to connect these scrolls. Then, three recursive back-stepping controllers are designed to control the chaotic behavior in the novel Chua multi-scroll chaotic system. The recursive back-stepping controllers can control the novel Chua multi-scroll chaotic system to a fixed point or a given sinusoidal function. Finally, a new method of detecting a weak signal embedded in the Gaussian noise is proposed on the basis of the novel Chua multi-scroll chaotic system and the recursive back-stepping controllers. The immunity of the novel Chua multi-scroll chaotic system to the Gaussian noise with the zero mean is analyzed by using the stochastic differential equation theory. The results show that the proposed new method of detecting the weak signal can detect the frequencies of the multi-frequency weak periodic signal embedded in the Gaussian noise. In addition, the novel Chua multi-scroll chaotic system has strong immunity to any Gaussian noise with the zero mean. The proposed method provides a new thought for detecting the weak signal.
      Corresponding author: Jia Mei-Mei, meimeijia14@163.com
    • Funds: Project supported by the Inner Mongolia University of Technology Foundation, China (Grant No. ZD201520) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2017BS0603).
    [1]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE T. Circuits 33 1072Google Scholar

    [2]

    Suykens J A K, Van de walle J 1993 IEEE T. Circuits-I 40 861Google Scholar

    [3]

    Lü J H, Chen G R, Yu X H, Leung H 2004 IEEE T. Circuits-I 51 2476Google Scholar

    [4]

    Lü J H, Han F L, Yu X H, Chen G R 2004 Automatica 40 1677Google Scholar

    [5]

    陈仕必, 曾以成, 徐茂林, 陈家胜 2011 物理学报 60 020507Google Scholar

    Chen S B, Zeng Y C, Xu M L, Chen J S 2011 Acta Phys. Sin. 60 020507Google Scholar

    [6]

    艾星星, 孙克辉, 贺少波 2014 物理学报 63 040503Google Scholar

    Ai X X, Sun K H, He S B 2014 Acta Phys. Sin. 63 040503Google Scholar

    [7]

    Hong Q H, Xie Q G, Xiao P 2017 Nonlinear Dyn. 87 1015Google Scholar

    [8]

    Zhang G T, Wang F Q 2018 Chin. Phys. B 27 018201Google Scholar

    [9]

    Xu F, Yu P 2010 J. Math. Anal. Appl. 362 252Google Scholar

    [10]

    Chen Z, Wen G L, Zhou H A, Chen J Y 2017 Optik 130 594Google Scholar

    [11]

    Wang C H, Luo X W, Wan Z 2014 Optik 125 6716Google Scholar

    [12]

    Lü J H, Murali K, Sinha S, Leung H, Aziz-Alaoui M A 2008 Phys. Lett. A 372 3234Google Scholar

    [13]

    Yuan F, Wang G Y, Wang X W 2016 Chaos 26 073107Google Scholar

    [14]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [15]

    Hu X Y, Liu C X, Liu L, Yao Y P, Zheng G C 2017 Chin. Phys. B 26 110502Google Scholar

    [16]

    Wang C H, Xia H, Zhou L 2017 Int. J. Bifurcat. Chaos 27 1750091Google Scholar

    [17]

    肖利全, 段书凯, 王丽丹 2018 物理学报 67 090502Google Scholar

    Xiao L Q, Duan S K, Wang L D 2018 Acta Phys. Sin. 67 090502Google Scholar

    [18]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [19]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196Google Scholar

    [20]

    Yang C H, Ge Z M, Chang C M, Li S Y 2010 Nonlinear Anal-real. 11 1977Google Scholar

    [21]

    Danaca M F, Fečkan M 2019 Commun. Nonlinear Sci. 74 1Google Scholar

    [22]

    Litak G, Syta A, Borowice M 2007 Chaos Soliton. Fract. 32 694Google Scholar

    [23]

    Gamal Mahmoud M, Ayman A A, Tarek M A, Emad E M 2017 Chaos Soliton. Fract. 104 680Google Scholar

    [24]

    Shen Y J, Wen S F, Yang S P, Guo S Q, Li L R 2018 Int. J. Nonlin. Mech. 98 173Google Scholar

    [25]

    Mfoumou G S, Kenmoé G D, Kofané T C 2019 Mech. Syst. Signal Pr. 119 399Google Scholar

    [26]

    Harb A, Zaher A, Zohdy M 2002 Proceedings of the American Control Conference Anchorage, Ak, USA, May 8-10, 2002 p2251

    [27]

    Laoye J A, Vincent U E, Kareem S O 2009 Chaos Soliton. Fract. 39 356Google Scholar

    [28]

    Njah A N, Sunday O D 2009 Chaos Soliton. Fract. 41 2371Google Scholar

    [29]

    Njah A N 2010 Nonlinear Dyn. 61 1Google Scholar

    [30]

    Birx D L, Pipenberg S J 1992 International Joint Conference on Neural Networks Baltimore, MD, USA, June 7-11, 1992 p881

    [31]

    徐艳春, 杨春玲 2010 哈尔滨工业大学学报 42 446Google Scholar

    Xu Y C, Yang C L 2010 Journal of Harbin Institute of Technology 42 446Google Scholar

    [32]

    Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516Google Scholar

    [33]

    Li G Z, Zhang B 2017 IEEE T. Ind. Electron. 64 2255

    [34]

    Zhong G Q, Man K F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 2907Google Scholar

    [35]

    Yu S M, Lü J H, Chen G R 2007 Int. J. Bifurcat. Chaos 17 1785Google Scholar

    [36]

    Christopher P S 1993 IEEE T. Circuits-I 40 675Google Scholar

    [37]

    Cafagna D, Grassi G 2003 Int. J. Bifurcat. Chaos 13 2889Google Scholar

    [38]

    李月, 杨宝俊, 石要武 2003 物理学报 52 526Google Scholar

    Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526Google Scholar

    [39]

    钱勇, 黄成军, 陈陈, 江秀臣 2007 中国电机工程学报 27 89

    Qian Y, Huang C J, Chen C, Jiang X C 2007 Proceedings of the CSEE 27 89

  • 图 1  对数函数

    Figure 1.  Logarithmic function.

    图 2  新Chua双涡卷混沌系统的电路图

    Figure 2.  Circuit diagram of the novel Chua double-scroll chaotic system.

    图 3  $\left| {{v_{{C_1}}}} \right|$的电路图

    Figure 3.  Circuit diagram of $\left| {{v_{{C_1}}}} \right|$.

    图 8  $g\left( {{v_{{C_1}}}} \right) = \log _2^{\frac{{{{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}} + 1}}{2}} \cdot {\rm{sgn}} ( - {v_{{C_1}}})$的电路图

    Figure 8.  Circuit diagram of $g\left( {{v_{{C_1}}}} \right) = \log _2^{\frac{{{{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}} + 1}}{2}}\times$ $ {\rm{sgn}} ( - {v_{{C_1}}})$.

    图 4  ${{\rm{e}}^{4\left| {{v_{{C_1}}}} \right|}}$的电路图

    Figure 4.  Circuit diagram of ${{\rm{e}}^{4\left| {{v_{{C_1}}}} \right|}}$.

    图 5  ${{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}}$的电路图

    Figure 5.  Circuit diagram of ${{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}}$.

    图 6  $\log _2^{\frac{{{{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}} + 1}}{2}}$的电路图

    Figure 6.  Circuit diagram of $\log _2^{\frac{{{{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}} + 1}}{2}}$.

    图 7  ${\rm{sgn}} \left( { - {v_{{C_1}}}} \right)$的电路图

    Figure 7.  Circuit diagram of ${\rm{sgn}} \left( { - {v_{{C_1}}}} \right)$.

    图 9  系统[(20)式]的李雅普诺夫指数

    Figure 9.  Lyapunov exponents of system (Equation(20)).

    图 10  新Chua双涡卷混沌系统 (a) $x\text{ - }y$平面的相图; (b) x方向的时域图

    Figure 10.  Novel Chua double-scroll chaotic system: (a) Phase diagram on the $x\text{ - }y$ plane; (b) time domain diagram in the x direction.

    图 11  多分段对数函数序列[(24)式], 取M = 1

    Figure 11.  Multi-segment logarithmic function series(Equation(24)) with M = 1.

    图 12  多分段对数函数序列[(25)式], 取N = 1

    Figure 12.  Multi-segment logarithmic function series(Equation(25)) with N = 1.

    图 13  x-y平面4-涡卷混沌吸引子的相图

    Figure 13.  Phase diagram of the 4-scroll chaotic attractor on the x-y plane.

    图 14  x-z平面12-涡卷混沌吸引子的相图

    Figure 14.  Phase diagram of the 12-scroll chaotic attractor on the x-z plane.

    图 15  最大李雅普诺夫指数

    Figure 15.  Largest Lyapunov exponent.

    图 16  x-y平面的庞加莱映射

    Figure 16.  Poincaré mapping on the x-y plane.

    图 17  状态变量和期望值$\left[ {\sin \left( t \right),{\rm{0}},{\rm{0}}} \right]$的时域图 (a) x, xd; (b) y, yd; (c) z, zd

    Figure 17.  Time domain diagram of state variables and desired values $\left[ {\sin \left( t \right),{\rm{0}},{\rm{0}}} \right]$: (a) x, xd; (b) y, yd; (c) z, zd.

    图 18  状态变量和期望值$\left( {{\rm{0}},{\rm{0}},{\rm{0}}} \right)$的时域图 (a) x, xd; (b) y, yd; (c) z, zd

    Figure 18.  Time domain diagram of state variables and desired values$\left( {{\rm{0}},{\rm{0}},{\rm{0}}} \right)$: (a) x, xd; (b) y, yd; (c) z, zd.

    图 19  检测原理图

    Figure 19.  Detection schematic diagram.

    图 20  系统[(52)式]的相图

    Figure 20.  Phase diagram of system [Equation(52)].

    图 21  检测系统[(53)式]的相图

    Figure 21.  Phase diagram of the detection system [Equation(53)]

    图 22  控制信号${U_1}\left( t \right)$${U_2}\left( t \right)$${U_3}\left( t \right)$的时域图 (a)原始图; (b)放大图, $ t = [0,100] {\rm{s}} $

    Figure 22.  Time domain diagram of control signals ${U_1}\left( t \right)$${U_2}\left( t \right)$${U_3}\left( t \right)$: (a) Original diagram (b) enlarging diagram, $t = [0,100]{\rm{ s}}$.

    图 23  待测信号的频谱图

    Figure 23.  Frequency spectrum of the signal to be detected.

    表 1  12-涡卷混沌吸引子的平衡点、特征值和平衡点的类型

    Table 1.  Equilibrium points, eigenvalues and types of equilibrium points for the 12-scroll chaotic attractor.

    平衡点特征值平衡点的类型
    ${Q_0}\left( {0,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{1,2}}\left( { \pm 10,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{3,4}}\left( { \pm 20,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{5,6}}\left( { \pm 30,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{7,8}}\left( { \pm 40,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{9,10}}\left( { \pm 50,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{11,12}}\left( { \pm 5,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{13,14}}\left( { \pm 15,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{15,16}}\left( { \pm 25,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{17,18}}\left( { \pm 35,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{19,20}}\left( { \pm 45,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{2{\rm{1}},2{\rm{2}}}}\left( { \pm 55,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    DownLoad: CSV
  • [1]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE T. Circuits 33 1072Google Scholar

    [2]

    Suykens J A K, Van de walle J 1993 IEEE T. Circuits-I 40 861Google Scholar

    [3]

    Lü J H, Chen G R, Yu X H, Leung H 2004 IEEE T. Circuits-I 51 2476Google Scholar

    [4]

    Lü J H, Han F L, Yu X H, Chen G R 2004 Automatica 40 1677Google Scholar

    [5]

    陈仕必, 曾以成, 徐茂林, 陈家胜 2011 物理学报 60 020507Google Scholar

    Chen S B, Zeng Y C, Xu M L, Chen J S 2011 Acta Phys. Sin. 60 020507Google Scholar

    [6]

    艾星星, 孙克辉, 贺少波 2014 物理学报 63 040503Google Scholar

    Ai X X, Sun K H, He S B 2014 Acta Phys. Sin. 63 040503Google Scholar

    [7]

    Hong Q H, Xie Q G, Xiao P 2017 Nonlinear Dyn. 87 1015Google Scholar

    [8]

    Zhang G T, Wang F Q 2018 Chin. Phys. B 27 018201Google Scholar

    [9]

    Xu F, Yu P 2010 J. Math. Anal. Appl. 362 252Google Scholar

    [10]

    Chen Z, Wen G L, Zhou H A, Chen J Y 2017 Optik 130 594Google Scholar

    [11]

    Wang C H, Luo X W, Wan Z 2014 Optik 125 6716Google Scholar

    [12]

    Lü J H, Murali K, Sinha S, Leung H, Aziz-Alaoui M A 2008 Phys. Lett. A 372 3234Google Scholar

    [13]

    Yuan F, Wang G Y, Wang X W 2016 Chaos 26 073107Google Scholar

    [14]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [15]

    Hu X Y, Liu C X, Liu L, Yao Y P, Zheng G C 2017 Chin. Phys. B 26 110502Google Scholar

    [16]

    Wang C H, Xia H, Zhou L 2017 Int. J. Bifurcat. Chaos 27 1750091Google Scholar

    [17]

    肖利全, 段书凯, 王丽丹 2018 物理学报 67 090502Google Scholar

    Xiao L Q, Duan S K, Wang L D 2018 Acta Phys. Sin. 67 090502Google Scholar

    [18]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [19]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196Google Scholar

    [20]

    Yang C H, Ge Z M, Chang C M, Li S Y 2010 Nonlinear Anal-real. 11 1977Google Scholar

    [21]

    Danaca M F, Fečkan M 2019 Commun. Nonlinear Sci. 74 1Google Scholar

    [22]

    Litak G, Syta A, Borowice M 2007 Chaos Soliton. Fract. 32 694Google Scholar

    [23]

    Gamal Mahmoud M, Ayman A A, Tarek M A, Emad E M 2017 Chaos Soliton. Fract. 104 680Google Scholar

    [24]

    Shen Y J, Wen S F, Yang S P, Guo S Q, Li L R 2018 Int. J. Nonlin. Mech. 98 173Google Scholar

    [25]

    Mfoumou G S, Kenmoé G D, Kofané T C 2019 Mech. Syst. Signal Pr. 119 399Google Scholar

    [26]

    Harb A, Zaher A, Zohdy M 2002 Proceedings of the American Control Conference Anchorage, Ak, USA, May 8-10, 2002 p2251

    [27]

    Laoye J A, Vincent U E, Kareem S O 2009 Chaos Soliton. Fract. 39 356Google Scholar

    [28]

    Njah A N, Sunday O D 2009 Chaos Soliton. Fract. 41 2371Google Scholar

    [29]

    Njah A N 2010 Nonlinear Dyn. 61 1Google Scholar

    [30]

    Birx D L, Pipenberg S J 1992 International Joint Conference on Neural Networks Baltimore, MD, USA, June 7-11, 1992 p881

    [31]

    徐艳春, 杨春玲 2010 哈尔滨工业大学学报 42 446Google Scholar

    Xu Y C, Yang C L 2010 Journal of Harbin Institute of Technology 42 446Google Scholar

    [32]

    Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516Google Scholar

    [33]

    Li G Z, Zhang B 2017 IEEE T. Ind. Electron. 64 2255

    [34]

    Zhong G Q, Man K F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 2907Google Scholar

    [35]

    Yu S M, Lü J H, Chen G R 2007 Int. J. Bifurcat. Chaos 17 1785Google Scholar

    [36]

    Christopher P S 1993 IEEE T. Circuits-I 40 675Google Scholar

    [37]

    Cafagna D, Grassi G 2003 Int. J. Bifurcat. Chaos 13 2889Google Scholar

    [38]

    李月, 杨宝俊, 石要武 2003 物理学报 52 526Google Scholar

    Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526Google Scholar

    [39]

    钱勇, 黄成军, 陈陈, 江秀臣 2007 中国电机工程学报 27 89

    Qian Y, Huang C J, Chen C, Jiang X C 2007 Proceedings of the CSEE 27 89

  • [1] Huang Ze-Hui, Li Ya-An, Chen Zhe, Liu Lian. Threshold determination method of Duffing chaotic system based on multi-scale entropy. Acta Physica Sinica, 2020, 69(16): 160501. doi: 10.7498/aps.69.20191642
    [2] Su Li-Yun, Sun Huan-Huan, Wang Jie, Yang Li-Ming. Detection and estimation of weak pulse signal in chaotic background noise. Acta Physica Sinica, 2017, 66(9): 090503. doi: 10.7498/aps.66.090503
    [3] Liu Jian-Ming, Yang Xia, Gao Yue-Long, Liu Fu-Cai. Application of similar Liu system in underwater weak signal detection. Acta Physica Sinica, 2016, 65(7): 070501. doi: 10.7498/aps.65.070501
    [4] Zeng Zhe-Zhao, Zhou Yong, Hu Kai. Study on partial discharge signals detection by extended Duffing oscillator. Acta Physica Sinica, 2015, 64(7): 070505. doi: 10.7498/aps.64.070505
    [5] Xing Hong-Yan, Zhang Qiang, Xu Wei. Hybrid algorithm for weak signal detection in chaotic sea clutter. Acta Physica Sinica, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [6] Jiao Shang-Bin, Ren Chao, Li Peng-Hua, Zhang Qing, Xie Guo. Stochastic resonance in an overdamped monostable system with multiplicative and additive α stable noise. Acta Physica Sinica, 2014, 63(7): 070501. doi: 10.7498/aps.63.070501
    [7] Fan Jian, Zhao Wen-Li, Zhang Ming-Lu, Tan Run-Hua, Wang Wan-Qiang. Nonlinear dynamics of stochastic resonance and its application in the method of weak signal detection. Acta Physica Sinica, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [8] Wu Yong-Feng, Huang Shao-Ping, Jin Guo-Bin. Study on partial discharge signal detection by coupled Duffing oscillators. Acta Physica Sinica, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [9] Fan Jian, Zhao Wen-Li, Wang Wan-Qiang. Study on the weak sinusoidal signal detection property using Duffing chaos system. Acta Physica Sinica, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [10] Gao Shi-Long, Zhong Su-Chuan, Wei Kun, Ma Hong. Weak signal detection based on chaos and stochastic resonance. Acta Physica Sinica, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [11] Xing Hong-Yan, Cheng Yan-Yan, Xu Wei. Detection of weak target signal with least-squares support vector machine and generalized embedding windows under chaotic background. Acta Physica Sinica, 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [12] Wang Lin-Ze, Zhao Wen-Li, Chen Xuan. Theory and experiment research on a Piecewise-linear model based on stochastic resonance. Acta Physica Sinica, 2012, 61(16): 160501. doi: 10.7498/aps.61.160501
    [13] Xing HongYan, Qi ZhengDong, Xu Wei. Weak signal estimation in chaotic clutter using selective support vector machine ensemble. Acta Physica Sinica, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [14] Wu Yong-Feng, Zhang Shi-Ping, Sun Jin-Wei, Peter Rolfe. Abrupt change of synchronization of ring coupled Duffing oscillator. Acta Physica Sinica, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [15] Wu Yong-Feng, Zhang Shi-Ping, Sun Jin-Wei, Peter Rolfe, Li Zhi. Transient synchronization mutation of ring coupled Duffing oscillators driven by pulse signal. Acta Physica Sinica, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [16] Zhu Guang-Qi, Ding Ke, Zhang Yu, Zhao Yuan. Experimental research of weak signal detection based on the stochastic resonance of nonlinear system. Acta Physica Sinica, 2010, 59(5): 3001-3006. doi: 10.7498/aps.59.3001
    [17] Xing Hong-Yan, Jin Tian-Li. Weak signal estimation in chaotic clutter using wavelet analysis and symmetric LS-SVM regression. Acta Physica Sinica, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [18] Wu Zhong-Qiang, Kuang Yu. Generalized synchronization control of multi-scroll chaotic systems. Acta Physica Sinica, 2009, 58(10): 6823-6827. doi: 10.7498/aps.58.6823
    [19] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [20] Lin Min, Huang Yong-Mei. Modulation and demodulation for detecting weak periodic signal of stochastic resonance. Acta Physica Sinica, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
Metrics
  • Abstract views:  12208
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  12 December 2018
  • Accepted Date:  24 April 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回