Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Threshold determination method of Duffing chaotic system based on multi-scale entropy

Huang Ze-Hui Li Ya-An Chen Zhe Liu Lian

Citation:

Threshold determination method of Duffing chaotic system based on multi-scale entropy

Huang Ze-Hui, Li Ya-An, Chen Zhe, Liu Lian
PDF
HTML
Get Citation
  • Entropy is one of the parameters describing the state of matter in thermodynamics, it can be used to measure the degree of confusion. The entropy of the signal can be used to express the complexity of the signal. The threshold for the transition of the Duffing chaotic system from the critical chaotic state to the large-scale periodic state is called the transition threshold. It is an important parameter for the analysis of chaotic systems, and its solution method is one of the problems urgently to be solved in chaos theory. If the jump threshold is smaller than the real threshold of the system, it will affect its detection signal-to-noise ratio. If the jump threshold is larger than the real threshold, it will cause incorrect detection results, so it is very important to accurately determine the jump threshold. In this study, we found that the multiscale sample entropy value of the Duffing system is significantly different when the system is in the chaotic state and the periodic state, when the system is in a chaotic state, the entropy value is larger, when the system is in a periodic state, the entropy value is smaller, and when the system enters the periodic state, the multiscale entropy value tends to be stable, this paper proposes to use this phenomenon to determine the transition threshold by analyzing the relationship between the entropy of the system and the amplitude of the driving force. When the entropy value is obviously smaller and tends to be stable, the corresponding driving force amplitude is the jump threshold. using this method, the jump threshold of the sinusoidal signal and square wave signal detection system is calculated, the results show that the method is fast, accurate and simple to calculate. However, this method may have a problem that the calculated threshold value is smaller than the real threshold value, our analysis is that the random selection of the subsequence used for calculation causes the calculation threshold value to be too small, so the method is improved in conjunction with genetic algorithm, using genetic algorithm to find the most complicated subsequence in the whole sequence, then this subsequence is used to solve the threshold, Through a large number of calculations and analysis, it can be seen that the problem of a small threshold is no longer present, and the improved method can obtain the jump threshold of the Duffing system very accurately.
      Corresponding author: Li Ya-An, liyaan@nwpu.edu.cn
    [1]

    王冠宇, 陶国良, 陈行, 林建亚 1997 仪器仪表学报 18 98

    Wang G Y, Tao G L, Chen X, Lin J Y 1997 Chinese Journal Of Scientific Instrument 18 98

    [2]

    李月, 杨宝俊, 石要武, 张忠彬, 于功梅 2001 吉林大学自然科学学报 1 75

    Li Y, Yang B J, Shi Y W, Zhang Z B, Yu G M 2001 Acta Scientiarum Naturalium Universitatis JiLinensis 1 75

    [3]

    李月, 杨宝俊, 石要武, 张忠彬, 于功梅 2001 吉林大学自然科学学报 2 65

    Li Y, Yang B J, Shi Y W, Zhang Z B, Yu G M 2001 Acta Scientiarum Naturalium Universitatis JiLinensis 2 65

    [4]

    李月, 杨宝俊, 石要武 2003 物理学报 52 526Google Scholar

    Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526Google Scholar

    [5]

    李月, 路鹏, 杨宝俊, 赵雪平 2006 物理学报 55 1672Google Scholar

    Li Y, Lu P, Yang B J, Zhao X P 2006 Acta Phys. Sin. 55 1672Google Scholar

    [6]

    赖志慧, 冷永刚, 孙建桥, 范胜波 2012 物理学报 61 050503Google Scholar

    Lai Z H, Leng Y G, Sun J Q, Fan S B 2012 Acta Phys. Sin. 61 050503Google Scholar

    [7]

    丛超, 李秀坤, 宋扬 2014 物理学报 63 064301Google Scholar

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301Google Scholar

    [8]

    牛德智, 陈长兴, 班斐, 徐浩翔, 李永宾, 王卓, 任晓岳, 陈强 2015 物理学报 64 060503Google Scholar

    Niu D Z, Chen C X, Ban F, Xu H X, Li Y B, Wang Z, Ren X Y, Chen Q 2015 Acta Phys. Sin. 64 060503Google Scholar

    [9]

    陈志光, 李亚安, 陈晓 2015 物理学报 64 200502Google Scholar

    Chen Z G, Li Y A, Chen X 2015 Acta Phys. Sin. 64 200502Google Scholar

    [10]

    时培明, 孙彦龙, 韩东颖 2016 计量学报 37 310Google Scholar

    Shi P M, Sun Y L, Han D Y 2016 Acta Metrologica Sinica 37 310Google Scholar

    [11]

    高振斌, 孙月明, 李景春 2015 河北工业大学学报 44 23

    Gao Z B, Sun Y M, Li J C 2015 Journal Of Hebei University of Technology 44 23

    [12]

    张菁, 王斌, 叶家敏 2016 实验室研究与探索 35 86Google Scholar

    Sun J, Wang B, Ye J M 2016 Research And Exploration In Laboratory 35 86Google Scholar

    [13]

    Gottwald G A, Melbourne I 2004 Physica D 212 100

    [14]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

    [15]

    蔺向阳, 陈长兴, 凌飞云, 黄继尧 2019 空军工程大学学报(自然科学版) 20 86

    Lin X Y, Chen C X, Ling F Y, Huang J Y 2019 Journal of Air Force Engineering University(Natural Science Edition) 20 86

    [16]

    梁涤青, 陈志刚, 邓小鸿 2015 电子学报 43 1972

    Liang D Q, Chen Z G, Deng X H 2015 Acta Electronica Sinica 43 1972

    [17]

    杨孝敬, 杨阳, 李淮周, 钟宁 2016 物理学报 65 218701Google Scholar

    Yang X J, Yang y, Li H Z, Zhong N 2016 Acta Phys. Sin. 65 218701Google Scholar

    [18]

    陈祥龙, 张兵志, 冯辅周, 江鹏程 2018 振动工程学报 31 902

    Chen X L, Zhang B Z, Feng F Z, Jiang P C 2018 Journal of Vibration Engineering 31 902

    [19]

    王鸿姗, 周静雷, 房乔楚 2019 西安工程大学学报 32 57

    Wang H S, Zhou J L, Fang Q C 2019 Journal of Xi’an Polytechnic University 32 57

    [20]

    徐为 2017 博士学位论文 (哈尔滨: 黑龙江大学)

    Xu W 2017 Ph. D. Dissertation (Haerbin: HeiLongJiang University) (in Chinese)

  • 图 1  系统状态跃变 (a) 临界混沌状态; (b) 周期状态

    Figure 1.  System state transition: (a) System state transition; (b) periodic state.

    图 2  方波信号检测系统多尺度熵变化情况

    Figure 2.  Variation of multi-scale entropy in square wave signal detection system.

    图 3  仿真实验求解方波信号检测系统阈值

    Figure 3.  Simulation experiment to solve the threshold of square wave signal detection system.

    图 4  正弦信号检测系统多尺度熵变化情况

    Figure 4.  Variation of multi-scale entropy in sinusoidal signal detection system.

    图 5  仿真实验求解正弦信号检测系统阈值

    Figure 5.  Simulation experiment to solve the threshold of sinusoidal signal detection system.

    图 6  真实水声信号

    Figure 6.  Real underwater acoustic signal.

    图 7  真实水声信号频谱

    Figure 7.  Spectrum of real underwater acoustic signals.

    图 8  真实信号检测系统多尺度熵值变化情况

    Figure 8.  Changes in multi-scale entropy of real signal detection system.

    图 9  仿真实验求解真实水声信号检测系统阈值

    Figure 9.  Simulation experiment to solve the threshold of real underwater acoustic signal detection system.

    图 10  对真实水声信号的检测 (a) 系统未添加真实信号; (b)系统添加真实信号

    Figure 10.  Detecting real underwater acoustic signals: (a) The system did not add a real signal; (b) system adds real signal

    图 11  5 rad/s正弦信号检测系统多尺度熵变化情况

    Figure 11.  Variation of multi-scale entropy in 5 rad/s sinusoidal signal detection system.

    图 12  仿真实验求解5 rad/s正弦信号检测系统跃变阈值

    Figure 12.  Simulation experiment to solve the threshold of 5 rad/s sinusoidal signal detection system.

    图 13  系统临界混沌状态

    Figure 13.  Critical chaotic state of the system.

    图 14  5 rad/s正弦信号检测系统最大多尺度熵变化情况

    Figure 14.  Variation of maximum multi-scale entropy of 5 rad/s sinusoidal signal detection system.

    表 1  Duffing子序列段熵值($r = 0.826$)

    Table 1.  Entropy value of the Duffing subsequence segment ($r = 0.826$)

    序列123456
    MsEn0.11880.07790.07680.07960.07660.0780
    DownLoad: CSV

    表 2  Duffing子序列段MsEn值($r = 0.827$)

    Table 2.  Entropy value of the Duffing subsequence segment($r = 0.827$)

    序列123456
    MsEn0.08200.08220.08020.07900.07770.0753
    DownLoad: CSV
  • [1]

    王冠宇, 陶国良, 陈行, 林建亚 1997 仪器仪表学报 18 98

    Wang G Y, Tao G L, Chen X, Lin J Y 1997 Chinese Journal Of Scientific Instrument 18 98

    [2]

    李月, 杨宝俊, 石要武, 张忠彬, 于功梅 2001 吉林大学自然科学学报 1 75

    Li Y, Yang B J, Shi Y W, Zhang Z B, Yu G M 2001 Acta Scientiarum Naturalium Universitatis JiLinensis 1 75

    [3]

    李月, 杨宝俊, 石要武, 张忠彬, 于功梅 2001 吉林大学自然科学学报 2 65

    Li Y, Yang B J, Shi Y W, Zhang Z B, Yu G M 2001 Acta Scientiarum Naturalium Universitatis JiLinensis 2 65

    [4]

    李月, 杨宝俊, 石要武 2003 物理学报 52 526Google Scholar

    Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526Google Scholar

    [5]

    李月, 路鹏, 杨宝俊, 赵雪平 2006 物理学报 55 1672Google Scholar

    Li Y, Lu P, Yang B J, Zhao X P 2006 Acta Phys. Sin. 55 1672Google Scholar

    [6]

    赖志慧, 冷永刚, 孙建桥, 范胜波 2012 物理学报 61 050503Google Scholar

    Lai Z H, Leng Y G, Sun J Q, Fan S B 2012 Acta Phys. Sin. 61 050503Google Scholar

    [7]

    丛超, 李秀坤, 宋扬 2014 物理学报 63 064301Google Scholar

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301Google Scholar

    [8]

    牛德智, 陈长兴, 班斐, 徐浩翔, 李永宾, 王卓, 任晓岳, 陈强 2015 物理学报 64 060503Google Scholar

    Niu D Z, Chen C X, Ban F, Xu H X, Li Y B, Wang Z, Ren X Y, Chen Q 2015 Acta Phys. Sin. 64 060503Google Scholar

    [9]

    陈志光, 李亚安, 陈晓 2015 物理学报 64 200502Google Scholar

    Chen Z G, Li Y A, Chen X 2015 Acta Phys. Sin. 64 200502Google Scholar

    [10]

    时培明, 孙彦龙, 韩东颖 2016 计量学报 37 310Google Scholar

    Shi P M, Sun Y L, Han D Y 2016 Acta Metrologica Sinica 37 310Google Scholar

    [11]

    高振斌, 孙月明, 李景春 2015 河北工业大学学报 44 23

    Gao Z B, Sun Y M, Li J C 2015 Journal Of Hebei University of Technology 44 23

    [12]

    张菁, 王斌, 叶家敏 2016 实验室研究与探索 35 86Google Scholar

    Sun J, Wang B, Ye J M 2016 Research And Exploration In Laboratory 35 86Google Scholar

    [13]

    Gottwald G A, Melbourne I 2004 Physica D 212 100

    [14]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

    [15]

    蔺向阳, 陈长兴, 凌飞云, 黄继尧 2019 空军工程大学学报(自然科学版) 20 86

    Lin X Y, Chen C X, Ling F Y, Huang J Y 2019 Journal of Air Force Engineering University(Natural Science Edition) 20 86

    [16]

    梁涤青, 陈志刚, 邓小鸿 2015 电子学报 43 1972

    Liang D Q, Chen Z G, Deng X H 2015 Acta Electronica Sinica 43 1972

    [17]

    杨孝敬, 杨阳, 李淮周, 钟宁 2016 物理学报 65 218701Google Scholar

    Yang X J, Yang y, Li H Z, Zhong N 2016 Acta Phys. Sin. 65 218701Google Scholar

    [18]

    陈祥龙, 张兵志, 冯辅周, 江鹏程 2018 振动工程学报 31 902

    Chen X L, Zhang B Z, Feng F Z, Jiang P C 2018 Journal of Vibration Engineering 31 902

    [19]

    王鸿姗, 周静雷, 房乔楚 2019 西安工程大学学报 32 57

    Wang H S, Zhou J L, Fang Q C 2019 Journal of Xi’an Polytechnic University 32 57

    [20]

    徐为 2017 博士学位论文 (哈尔滨: 黑龙江大学)

    Xu W 2017 Ph. D. Dissertation (Haerbin: HeiLongJiang University) (in Chinese)

  • [1] He Xiao-Tian, Xu Jin-Liang, Cheng Yi-Wei. Measurements and identification of supercritical pseudo-boiling heat transfer modes based on fiber optic probes and multiscale entropy. Acta Physica Sinica, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [2] Li Hang, Shen Yong-Jun, Yang Shao-Pu, Peng Meng-Fei, Han Yan-Jun. Simultaneous primary and super-harmonic resonance of Duffing oscillator. Acta Physica Sinica, 2021, 70(4): 040502. doi: 10.7498/aps.70.20201059
    [3] Lu Jian-Guang, Tang Juan, Qin Xiao-Lin, Feng Yong. Modified group preserving methods and applications in chaotic systems. Acta Physica Sinica, 2016, 65(11): 110501. doi: 10.7498/aps.65.110501
    [4] Liu Jian-Ming, Yang Xia, Gao Yue-Long, Liu Fu-Cai. Application of similar Liu system in underwater weak signal detection. Acta Physica Sinica, 2016, 65(7): 070501. doi: 10.7498/aps.65.070501
    [5] Zeng Zhe-Zhao, Zhou Yong, Hu Kai. Study on partial discharge signals detection by extended Duffing oscillator. Acta Physica Sinica, 2015, 64(7): 070505. doi: 10.7498/aps.64.070505
    [6] Xing Hong-Yan, Zhang Qiang, Xu Wei. Hybrid algorithm for weak signal detection in chaotic sea clutter. Acta Physica Sinica, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [7] Gou Jing, Liu Jun-Yong, Wei Zhen-Bo, Gareth Taylor, Liu You-Bo. Complexity analysis of power system energy flow based on multi-scale entropy. Acta Physica Sinica, 2014, 63(20): 208402. doi: 10.7498/aps.63.208402
    [8] Xiang Zheng-Tao, Chen Yu-Feng, Li Yu-Jin, Xiong Li. Complexity analysis of traffic flow based on multi-scale entropy. Acta Physica Sinica, 2014, 63(3): 038903. doi: 10.7498/aps.63.038903
    [9] Wu Yong-Feng, Huang Shao-Ping, Jin Guo-Bin. Study on partial discharge signal detection by coupled Duffing oscillators. Acta Physica Sinica, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [10] Fan Jian, Zhao Wen-Li, Wang Wan-Qiang. Study on the weak sinusoidal signal detection property using Duffing chaos system. Acta Physica Sinica, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [11] Tang You-Fu, Liu Shu-Lin, Lei Na, Jiang Rui-Hong, Liu Ying-Hui. Feature analysis in frequency domain of Duffing system based on general local frequency. Acta Physica Sinica, 2012, 61(17): 170504. doi: 10.7498/aps.61.170504
    [12] Song Dan, Zhang Xiao-Lin. Study of the multi-system compatible receiver’s frequency selection problem based on fixed point theory and its genetic algorithm realization. Acta Physica Sinica, 2010, 59(9): 6697-6705. doi: 10.7498/aps.59.6697
    [13] Zheng Gui-Bo, Jin Ning-De. Multiscale entropy and dynamic characteristics of two-phase flow patterns. Acta Physica Sinica, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [14] He Liang, Du Lei, Zhuang Yi-Qi, Li Wei-Hua, Chen Jian-Ping. Multiscale entropy complexity analysis of metallic interconnection electromigration noise. Acta Physica Sinica, 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [15] Niu Pei-Feng, Zhang Jun, Guan Xin-Ping. Research on genetic algorithm optimization based on PID control with two degrees of freedom controller for chaotic system. Acta Physica Sinica, 2007, 56(7): 3759-3765. doi: 10.7498/aps.56.3759
    [16] Niu Pei_Feng, Zhang Jun, Guan Xin_Ping. Research on a proportional-integral-derivative neural network decoupling control based on genetic algorithm optimization for unified chaotic system. Acta Physica Sinica, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [17] Wang Dong-Feng. Genetic algorithm optimization based proportional-integral-derivative controller for unified chaotic system. Acta Physica Sinica, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [18] Wu Zhong-Qiang, Ao Dun, Liu Kun. Fuzzy control of a chaotic system based on genetic algorithm. Acta Physica Sinica, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
    [19] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [20] Dai Dong, Ma Xi-Kui, Li Fu-Cai, You Yong. . Acta Physica Sinica, 2002, 51(11): 2459-2462. doi: 10.7498/aps.51.2459
Metrics
  • Abstract views:  8277
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2019
  • Accepted Date:  27 April 2020
  • Available Online:  20 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回