搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义局部频率的Duffing系统频域特征分析

唐友福 刘树林 雷娜 姜锐红 刘颖慧

引用本文:
Citation:

基于广义局部频率的Duffing系统频域特征分析

唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧

Feature analysis in frequency domain of Duffing system based on general local frequency

Tang You-Fu, Liu Shu-Lin, Lei Na, Jiang Rui-Hong, Liu Ying-Hui
PDF
导出引用
  • 针对传统功率谱在频率概念上的局限性及傅氏变换的固有缺陷, 提出一种新的广义局部频率概念,在自适应峰值分解方法的基础上, 研究周期激励下Duffing系统随阻尼参数r变化的频域动力学特征,发现了频率分岔现象, 并且不同参数r下的混沌时间序列在中心频率附近出现连续频段, 其形状具有相似性.通过厄米解调分析,总结出混沌时间序列具有频率调制特性和频率调制的相似性. 上述研究表明:提出的基于自适应峰值分解的广义局部频率方法, 能够有效提取Duffing系统的频域特征,为观察非线性系统混沌状态下频率连续分布规律提供一种新方法.
    Owing to the limitations of the concept of frequency for power spectrum and the inherent defects of Fourier transform, a novel concept of general local frequency is proposed. Based on a approach to adaptive peak decomposition, the dynamic feature in frequency domain varying with parameter r of Duffing system driven by periodic signal is investigated. And a phenomenon of frequency bifurcation is found. Moreover, coninuous frequency bands exist near the central frequency of chaos time seriers at different values of parameter r and their shapes are similar. By demodulation analysis of Hilbert transform, the modulation characteristic and modulation similarity of chaos time seriers are summarized. The above study shows that the proposed approach to general local frequency based on adaptive peak is effective for freature extraction in frequency domain of Duffing system. It provides a new method to observe a continunous distribution of frequency bands for the non-linear system in chaotic state.
    • 基金项目: 国家自然科学基金(批准号: 51175316) 和高等学校博士点专项科研基金项目(批准号: 20103108110006)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175316), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103108110006).
    [1]

    Zhou X Y 2011 Acta Phys. Sin. 60 010503 (in Chinese) [周小勇 2011 物理学报 60 10503]

    [2]

    Lv J H, Lu J A, Chen S H 2005 Analysis and Aplication of Chaos Time Seriers (1st ed) (Wuhan: Wuhan University Press) p47 (in Chinese) [吕金虎, 陆君安, 陈士华 2005 混沌时间序列分析及其应用(第1版) 第47页]

    [3]

    Thamilmaran K, Senthilkumar D, Venkatesan A, Lakshmanan M 2006 Phys. Rev. E 74 036205

    [4]

    Eduardo G Altmann, Tamás Tél 2009 Phys. Rev. E 79 016204

    [5]

    Parthasarathy S, Manikandakumar K 2010 Chaos 20 039901

    [6]

    Qin W Y, Meng G, Zhang T 2003 Journal of Sound and Vibration 259 571

    [7]

    Afsar Ozgur, Tirnakli Ugur 2010 Phys. Rev. E 82 046210

    [8]

    Pierre-Francois Loos, Peter M W Gill 2010 Phys Rev. Lett. 105 113001

    [9]

    Mohammad Ataei, Arash Kiyoumarsi, Behzad Ghorbani 2010 Phys. Lett. A 374 4226

    [10]

    Zhou Y H 2010 Acta Methematica Scientia 31 102

    [11]

    Li Y G, Liu J, Zhang J P 2008 Chinese Journal of Mechanical Engineering. 44 82 (in Chinese) [李允公, 刘杰, 张金萍 2008 机械工程学报 40 82]

    [12]

    Anthony Challinor, Antony Lewis 2011 Phys. Rev. D 84 043516

    [13]

    Relaño A, Muñoz L, Retamosa J, Faleiro E, Molina R A 2008 Phys. Rev. E 77 031103

    [14]

    Nikitin A, Stocks N G, Bulsara A R 2007 Phys. Rev. E 76 041138

    [15]

    Ogawa Jun, Tanaka Hiroaki 2009 Probabilistic Engineering Mechanics 24 537

    [16]

    Babu H, Wanare Harshawardhan 2011 Phys. Rev. A 83 033819

    [17]

    Gong Y B 2011 Phys. A 390 3662

    [18]

    Hu Y H, Ma Z Y 2007 Chaos, Solitons & Fractals 34 482

    [19]

    Braun S, Feldman M 2011 Mechanical Systems and Signal Processing 25 072608

    [20]

    Jonathan M L, Sofia C O Bivariate 2010 IEEE Transactions on Signal Processing 58 591

    [21]

    Laila D S, Messina A R, Pal B C A 2009 IEEE Transaction on Power Systems 24 610

    [22]

    Gong Z Q, Zou M W, Gao X Q, Dong W J 2005 Acta Phys. Sin. 54 3947 (in Chinese) [龚志强, 邹明玮, 高新全, 董文杰 2005 物理学报 54 3947]

    [23]

    Wang K, Guang X P, Ding X F, Qiao J M 2010 Acta Phys. Sin. 59 6859 (in Chinese) [王坤, 关新平, 丁喜峰, 乔杰敏 2010 物理学报 59 6859]

    [24]

    Yang M, An J P, Chen N, Wei J C 2011 Transactions of Beijing Institute of Technology 31 329 (in Chinese) [杨淼, 安建平, 陈宁, 卫景宠 2011 北京理工大学学报 31 329]

    [25]

    Hartley R, Zisserman A 2003 Multiple View Geometry in Computer Vision (2nd ed) (New York: Cambridge University Press) p95

    [26]

    Ma S D, Zhang Z Y 2003 Computer Vision-Computation Theory and Algorithm Fundamentals (Beijing: Science Press) p67 (in Chinese) [马颂德, 张正友 2003 计算机视觉-计算理论和算法基础(北京:科学出版社) 第67页]

    [27]

    Feldman M 2011 Mechanical Systems and Signal Processing 25 3205

  • [1]

    Zhou X Y 2011 Acta Phys. Sin. 60 010503 (in Chinese) [周小勇 2011 物理学报 60 10503]

    [2]

    Lv J H, Lu J A, Chen S H 2005 Analysis and Aplication of Chaos Time Seriers (1st ed) (Wuhan: Wuhan University Press) p47 (in Chinese) [吕金虎, 陆君安, 陈士华 2005 混沌时间序列分析及其应用(第1版) 第47页]

    [3]

    Thamilmaran K, Senthilkumar D, Venkatesan A, Lakshmanan M 2006 Phys. Rev. E 74 036205

    [4]

    Eduardo G Altmann, Tamás Tél 2009 Phys. Rev. E 79 016204

    [5]

    Parthasarathy S, Manikandakumar K 2010 Chaos 20 039901

    [6]

    Qin W Y, Meng G, Zhang T 2003 Journal of Sound and Vibration 259 571

    [7]

    Afsar Ozgur, Tirnakli Ugur 2010 Phys. Rev. E 82 046210

    [8]

    Pierre-Francois Loos, Peter M W Gill 2010 Phys Rev. Lett. 105 113001

    [9]

    Mohammad Ataei, Arash Kiyoumarsi, Behzad Ghorbani 2010 Phys. Lett. A 374 4226

    [10]

    Zhou Y H 2010 Acta Methematica Scientia 31 102

    [11]

    Li Y G, Liu J, Zhang J P 2008 Chinese Journal of Mechanical Engineering. 44 82 (in Chinese) [李允公, 刘杰, 张金萍 2008 机械工程学报 40 82]

    [12]

    Anthony Challinor, Antony Lewis 2011 Phys. Rev. D 84 043516

    [13]

    Relaño A, Muñoz L, Retamosa J, Faleiro E, Molina R A 2008 Phys. Rev. E 77 031103

    [14]

    Nikitin A, Stocks N G, Bulsara A R 2007 Phys. Rev. E 76 041138

    [15]

    Ogawa Jun, Tanaka Hiroaki 2009 Probabilistic Engineering Mechanics 24 537

    [16]

    Babu H, Wanare Harshawardhan 2011 Phys. Rev. A 83 033819

    [17]

    Gong Y B 2011 Phys. A 390 3662

    [18]

    Hu Y H, Ma Z Y 2007 Chaos, Solitons & Fractals 34 482

    [19]

    Braun S, Feldman M 2011 Mechanical Systems and Signal Processing 25 072608

    [20]

    Jonathan M L, Sofia C O Bivariate 2010 IEEE Transactions on Signal Processing 58 591

    [21]

    Laila D S, Messina A R, Pal B C A 2009 IEEE Transaction on Power Systems 24 610

    [22]

    Gong Z Q, Zou M W, Gao X Q, Dong W J 2005 Acta Phys. Sin. 54 3947 (in Chinese) [龚志强, 邹明玮, 高新全, 董文杰 2005 物理学报 54 3947]

    [23]

    Wang K, Guang X P, Ding X F, Qiao J M 2010 Acta Phys. Sin. 59 6859 (in Chinese) [王坤, 关新平, 丁喜峰, 乔杰敏 2010 物理学报 59 6859]

    [24]

    Yang M, An J P, Chen N, Wei J C 2011 Transactions of Beijing Institute of Technology 31 329 (in Chinese) [杨淼, 安建平, 陈宁, 卫景宠 2011 北京理工大学学报 31 329]

    [25]

    Hartley R, Zisserman A 2003 Multiple View Geometry in Computer Vision (2nd ed) (New York: Cambridge University Press) p95

    [26]

    Ma S D, Zhang Z Y 2003 Computer Vision-Computation Theory and Algorithm Fundamentals (Beijing: Science Press) p67 (in Chinese) [马颂德, 张正友 2003 计算机视觉-计算理论和算法基础(北京:科学出版社) 第67页]

    [27]

    Feldman M 2011 Mechanical Systems and Signal Processing 25 3205

  • [1] 张芸芸, 李义方, 石勤振, 许乐修, 戴菲, 邢文宇, 他得安. 基于相位迁移的超声平面波多层皮质骨成像. 物理学报, 2023, 72(15): 154303. doi: 10.7498/aps.72.20230581
    [2] 李航, 申永军, 杨绍普, 彭孟菲, 韩彦军. Duffing系统的主-超谐联合共振. 物理学报, 2021, 70(4): 040502. doi: 10.7498/aps.70.20201059
    [3] 黄泽徽, 李亚安, 陈哲, 刘恋. 基于多尺度熵的Duffing混沌系统阈值确定方法. 物理学报, 2020, 69(16): 160501. doi: 10.7498/aps.69.20191642
    [4] 王宇娟, 涂俐兰, 宋帅, 李宽洋. 耦合含时滞的相互依存网络的局部自适应异质同步. 物理学报, 2018, 67(5): 050504. doi: 10.7498/aps.67.20171927
    [5] 高继华, 史文茂, 汤艳丰, 肖骐, 杨海涛. 局部不均匀性对时空系统振荡频率的影响. 物理学报, 2016, 65(15): 150503. doi: 10.7498/aps.65.150503
    [6] 陆见光, 唐卷, 秦小林, 冯勇. 改进的保群算法及其在混沌系统中的应用. 物理学报, 2016, 65(11): 110501. doi: 10.7498/aps.65.110501
    [7] 金发成, 王兵兵. 频域图像下的强场非序列电离过程. 物理学报, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [8] 涂俐兰, 刘红芳, 余乐. 噪声下时滞复杂网络的局部自适应H无穷一致性. 物理学报, 2013, 62(14): 140506. doi: 10.7498/aps.62.140506
    [9] 韩群, 徐伟, 刘涛, 刘莉. 两个周期激励下Duffing-van der Pol系统的混沌瞬态和广义激变. 物理学报, 2013, 62(12): 120506. doi: 10.7498/aps.62.120506
    [10] 张若洵, 杨洋, 杨世平. 分数阶统一混沌系统的自适应同步. 物理学报, 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [11] 蔡娜, 井元伟, 张嗣瀛. 不同结构混沌系统的自适应同步和反同步. 物理学报, 2009, 58(2): 802-813. doi: 10.7498/aps.58.802
    [12] 罗小华, 李华青, 陈秋华. 混沌系统自适应追踪控制新方法. 物理学报, 2009, 58(11): 7532-7538. doi: 10.7498/aps.58.7532
    [13] 温淑焕, 王哲, 刘福才. Hénon混沌系统的自适应广义预测控制快速算法. 物理学报, 2009, 58(6): 3753-3758. doi: 10.7498/aps.58.3753
    [14] 刘福才, 梁晓明, 宋佳秋. 广义Hénon混沌系统的自适应双模控制与同步. 物理学报, 2008, 57(3): 1458-1464. doi: 10.7498/aps.57.1458
    [15] 谌 龙, 王德石. Chen系统的自适应追踪控制. 物理学报, 2007, 56(10): 5661-5664. doi: 10.7498/aps.56.5661
    [16] 刘云峰, 杨小冈, 缪 栋, 袁润平. 基于模糊滑模的有限时间混沌同步实现. 物理学报, 2007, 56(11): 6250-6257. doi: 10.7498/aps.56.6250
    [17] 王兴元, 武相军. 不确定Chen系统的参数辨识与自适应同步. 物理学报, 2006, 55(2): 605-609. doi: 10.7498/aps.55.605
    [18] 王校锋, 司守奎, 史国荣. 基于Terminal滑模的有限时间混沌同步实现. 物理学报, 2006, 55(11): 5694-5699. doi: 10.7498/aps.55.5694
    [19] 董恩增, 陈增强, 袁著祉. 混沌系统的自适应多变量广义预测控制与同步. 物理学报, 2005, 54(10): 4578-4583. doi: 10.7498/aps.54.4578
    [20] 关新平, 范正平, 彭海朋, 王益群. 陈氏混沌系统的自适应控制. 物理学报, 2001, 50(11): 2108-2111. doi: 10.7498/aps.50.2108
计量
  • 文章访问数:  6479
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-12
  • 修回日期:  2012-02-15
  • 刊出日期:  2012-09-05

/

返回文章
返回