Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precise measurements of electron g factors in bound states of few-electron ions

Tu Bing-Sheng

Citation:

Precise measurements of electron g factors in bound states of few-electron ions

Tu Bing-Sheng
cstr: 32037.14.aps.73.20240683
PDF
HTML
Get Citation
  • The electron g factor is an important fundamental structural parameter in atomic physics, as it reveals various mechanisms of interactions between electrons and external fields. Precise measurements of g factors of bound electrons in simple atomic and molecular systems provide an effective method for investigating the bound-state quantum electrodynamics (QED) theory. Especially in highly-charged heavy ions (HCIs), the strong electromagnetic interactions between the nuclei and inner-shell electrons provide unique opportunities to test QED under extremely strong fields. Accurate measurements of the g factors of the bound-state electrons are also important for determining nuclear effects, nuclear parameters and fundamental constants. The research on g factors of the bound-state electrons has become a frontier topic in fundamental physics. A Penning trap, which uses steady-state electromagnetic fields to confine charged particles, is utilized to precisely measure the g factor. This paper presents a comprehensive review of the experiments on g factors for few-electron simple systems in Penning traps, including experimental principles, experimental setups, measurement methods, and a summary of important research findings. The physical concept of the electron g factor and its historical research background are introduced. The electron g factor is considered as an effective probe to study higher-order QED effects. Through high-precision measurements of the free electron g factor, discrepancies between the fine-structure constants and other experimental results in atomic physics are identified. Notably, the g factor of the 1s electron in HCIs deviates significantly from the value for free electrons as the atomic number increases. Experimental principles, including the principle of the Penning trap and the principle of measuring the bound-state electron g factors are discussed. A double-trap experiment setup and related precision measurement techniques are also introduced.This paper reviews several milestone experiments including (1) the stringent test of bound-state QED by precise measurement of bound-state electron g factor of a 118Sn49+ ion, (2) measurement of the g factors of lithium-like and boron-like ions and their applications, and (3) measurement of the g-factor isotope shift by using an advanced two-ion balance technique in the Penning trap, providing an insight into the QED effects in nuclear recoil. Finally, this paper summarizes the challenges currently faced in measuring the g factors of bound-state electrons in few-electron ion systems and provides the prospects for the future developments of this field.
      Corresponding author: Tu Bing-Sheng, bingshengtu@fudan.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602504), the National Natural Science Foundation of China (Grant No. 12204110), and the Shanghai Pujiang Talent Program (Grant No. 22PJ1401100).
    [1]

    Landé A 1921 Z. Für Phys. 5 231

    [2]

    Kusch P, Foley H M 1947 Phys. Rev. 72 1256

    [3]

    Kinoshita T 1990 Advanced Series on Directions in HighEnergy Physics (Singapore: World Scientific) pp218-321

    [4]

    Schwinger J 1948 Phys. Rev. 73 416Google Scholar

    [5]

    Laporta S, Remiddi E 1996 Phys. Lett. B 379 283Google Scholar

    [6]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807Google Scholar

    [7]

    Fan X, Myers T G, Sukra B A D, Gabrielse G 2023 Phys. Rev. Lett. 130 071801Google Scholar

    [8]

    Shabaev V M, Glazov D A, Plunien G, Volotka A V 2015 J. Phys. Chem. Ref. Data 44 031205Google Scholar

    [9]

    Breit G 1928 Nature 122 649

    [10]

    Werth G, Sturm S, Blaum K 2018 Adv. At. Mol. Opt. Phys. 67 257

    [11]

    Sturm S, Arapoglou I, Egl A, Höcker M, Kraemer S, Sailer T, Tu B, Weigel A, Wolf R, López-Urrutia J C, Blaum K 2019 Eur. Phys. J. Spec. Top. 227 1425Google Scholar

    [12]

    Heiße F, Door M, Sailer T, Filianin P, Herkenhoff J, König C M, Kromer K, Lange D, Morgner J, Rischka A, Schweiger C, Tu B, Novikov Y N, Eliseev S, Sturm S, Blaum K 2023 Phys. Rev. Lett. 131 253002Google Scholar

    [13]

    Morgner J, Tu B, König C M, Sailer T, Heiße F, Bekker H, Sikora B, Lyu C, Yerokhin V A, Harman Z, Crespo López-Urrutia J R, Keitel C H, Sturm S, Blaum K 2023 Nature 622 53Google Scholar

    [14]

    Brown L S, Gabrielse G 1986 Rev. Mod. Phys. 58 233Google Scholar

    [15]

    Tu B, Si R, Shen Y, Wang J, Wei B, Chen C, Yao K, Zou Y 2023 Phys. Rev. Res. 5 043014Google Scholar

    [16]

    Hermanspahn N, Häffner H, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 84 427Google Scholar

    [17]

    Sturm S, Wagner A, Schabinger B, Blaum K 2011 Phys. Rev. Lett. 107 143003Google Scholar

    [18]

    Häffner H, Beier T, Hermanspahn N, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 85 5308Google Scholar

    [19]

    Verdú J, Djekić S, Stahl S, Valenzuela T, Vogel M, Werth G, Beier T, Kluge H J, Quint W 2004 Phys. Rev. Lett. 92 093002Google Scholar

    [20]

    Sturm S, Wagner A, Schabinger B, Zatorski J, Harman Z, Quint W, Werth G, Keitel C H, Blaum K 2011 Phys. Rev. Lett. 107 023002Google Scholar

    [21]

    Martínez A J G, López-Urrutia J R C, Fischer D, Orts R S, Ullrich J 2007 J. Phys. Conf. Ser. 72 012001Google Scholar

    [22]

    Zinenko D V, Glazov D A, Kosheleva V P, Volotka A V, Fritzsche S 2023 Phys. Rev. A 107 032815Google Scholar

    [23]

    Kosheleva V P, Volotka A V, Glazov D A, Zinenko D V, Fritzsche S 2022 Phys. Rev. Lett. 128 103001Google Scholar

    [24]

    Arapoglou I, Egl A, Höcker M, Sailer T, Tu B, Weigel A, Wolf R, Cakir H, Yerokhin V A, Oreshkina N S, Agababaev V A, Volotka A V, Zinenko D V, Glazov D A, Harman Z, Keitel C H, Sturm S, Blaum K 2019 Phys. Rev. Lett. 122 253001Google Scholar

    [25]

    Shabaev V M, Glazov D A, Oreshkina N S, Volotka A V, Plunien G, Kluge H J, Quint W 2006 Phys. Rev. Lett. 96 253002Google Scholar

    [26]

    Yerokhin V A, Berseneva E, Harman Z, Tupitsyn I I, Keitel C H 2016 Phys. Rev. Lett. 116 100801Google Scholar

    [27]

    Köhler F, Blaum K, Block M, Chenmarev S, Eliseev S, Glazov D A, Goncharov M, Hou J, Kracke A, Nesterenko D A, Novikov Y N, Quint W, Minaya Ramirez E, Shabaev V M, Sturm S, Volotka A V, Werth G 2016 Nat. Commun. 7 10246Google Scholar

    [28]

    Sailer T, Debierre V, Harman Z, Heiße F, König C, Morgner J, Tu B, Volotka A V, Keitel C H, Blaum K, Sturm S 2022 Nature 606 479Google Scholar

    [29]

    Debierre V, Keitel C H, Harman Z 2020 Phys. Lett. B 807 135527Google Scholar

    [30]

    Schneider A, Sikora B, Dickopf S, Müller M, Oreshkina N S, Rischka A, Valuev I A, Ulmer S, Walz J, Harman Z, Keitel C H, Mooser A, Blaum K 2022 Nature 606 878Google Scholar

    [31]

    Kaiser A, Dickopf S, Door M, Behr R, Beutel U, Eliseev S, Kaushik A, Kromer K, Müller M, Palafox L, Ulmer S, Mooser A, Blaum K 2024 Appl. Phys. Lett. 124 224002Google Scholar

    [32]

    Devlin J A, Wursten E, Harrington J A, Higuchi T, Blessing P E, Borchert M J, Erlewein S, Hansen J J, Morgner J, Bohman M A, Mooser A H, Smorra C, Wiesinger M, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Ulmer S 2019 Phys. Rev. Appl. 12 , 044012 DOI: 10.1103/PhysRevApplied.12.044012

    [33]

    Ketter J, Eronen T, Höcker M, Streubel S, Blaum K 2014 Int. J. Mass Spectrom. 358 1Google Scholar

    [34]

    Tu B, Hahne F, Arapoglou I, Egl A, Heiße F, Höcker M, König C, Morgner J, Sailer T, Weigel A, Wolf R, Sturm S 2021 Adv. Quantum Technol. 4 2100029Google Scholar

    [35]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, BASE Collaboration 2021 Nature 596 514Google Scholar

    [36]

    Will C, Wiesinger M, Micke P, Yildiz H, Driscoll T, Kommu S, Abbass F, Arndt B P, Bauer B B, Erlewein S, Fleck M, Jäger J I, Latacz B M, Mooser A, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Devlin J A, Ospelkaus C, Quint W, Soter A, Walz J, Smorra C, Ulmer S 2024 Phys. Rev. Lett. 133 023002Google Scholar

  • 图 1  自由电子g因子最低阶QED修正的费曼图描述, 直线代表自由传播的电子, 三角形表示电磁场而曲线表示电子与电磁场作用中的虚光子 (a)自能效应; (b)真空极化效应

    Figure 1.  Feynman diagrams of the first-order QED corrections of the free electron g-factor, the straight line represents the electron, curved lines as the photons and the triangle as the magnetic field: (a) The self-energy term; (b) the vacuum-polarization term.

    图 2  类氢离子1s电子g因子与平均电场强度随原子序数Z的依赖关系

    Figure 2.  g factor of 1s electron and the mean electromagnetic field as a function of atomic number Z.

    图 3  类氢离子基态g因子的高阶QED贡献与原子核效应随原子序数的依赖关系, 数据(图片)来自文献[11]

    Figure 3.  Relative contributions of the g factors of H-like ions as a function of atomic number Z, from Ref. [11].

    图 4  潘宁离子阱剖面结构图, 离子运动与镜像电流测量原理示意图(图中部分素材由马克斯普朗克核物理研究所提供)

    Figure 4.  Cut model of Penning traps with illustration of ion motion and image current detection system (some of the materials in the image are provided by the Max-Planck-Institute for Nuclear Physics).

    图 5  12C5+离子拉莫频率共振谱, 数据(图片)来自文献[16]

    Figure 5.  Larmor resonance of 12C5+ bound-state electron, from Ref. [16].

    图 6  双阱实验装置剖面示意图, 图片来自文献[18]

    Figure 6.  Cut model of double penning trap system in Mainz, from Ref. [18].

    图 7  基于双阱实验装置的g因子测量共振谱, 图片来自文献[18]

    Figure 7.  g-factor resonance spectrum from double Penning trap system in Mainz, from Ref. [18].

    图 8  ALPHATRAP实验系统示意图, 高电荷态重离子由Heidelberg EBIT中产生, 离子束团引出后经过电荷态筛选、偏转、减速、聚焦后被潘宁阱俘获, 手动低温阀可以用来隔离室温束线与低温离子阱的真空环境, 保证离子阱内部真空度优于10–17 torr, 图片来自文献[13]

    Figure 8.  Schematic diagram of the ALPHATRAP experiment, the highly charged ions are produced in the Heidelberg EBIT, the ions are extracted, with charge-state selection, and injected into the Penning trap, the cryogenic valve can be closed to isolate the trap vacuum from the beamline, resulting in a vacuum better than 10–17 torr, from Ref. [13].

    图 9  类锂离子基态g因子的高阶QED贡献, 电子-电子关联效应、Screened QED效应、原子核效应随原子序数的依赖关系, 数据(图片)来自文献[10]

    Figure 9.  Relative contributions (QED corrections, interelectronic interaction and screened QED) of the g factors of Li-like ions as a function of atomic number Z, from Ref. [10].

    表 1  类氢12C5+, 16O7+, 20Ne9+, 28Si13+118Sn49+基态g因子计算与实验数据表

    Table 1.  Experimental and theoretical g factors of 12C5+, 16O7+, 20Ne9+, 28Si13+118Sn49+.

    12C5+ 16O7+ 20Ne9+ 28Si13+ 118Sn49+
    gDirac 1.99872135439(1) 1.99772600306(2) 1.99644517090 1.9930235716 1.90807920530
    Free QED 0.00231930437(1) 0.00231930437(1) 0.00231930435 0.00231930437(1) 0.00231930435
    BS-QED 0.00000084340(3) 0.00000159438(11) 0.00000265069(12) 0.0000058558(17) 0.000148098(298)
    FNS 0.00000000041 0.00000000155(1) 0.000 00000476(1) 0.000000 205 0.000014489(24)
    NR 0.00000008762 0.00000011697 0.00000014641 0.0000002051(1) 0.000000726
    Hadronic –0.000000002
    gtheo 2.00104159018(3) 2.00004702128(11) 1.99876727711(12) 1.995348958 0(17) 1.910561821(299)
    gexp 2.0010415964(45) 2.0000470254(46) 1.99876727699(19) 1.99534895910(81) 1.910562058962(914)
    注: gDirac 代表Dirac方程计算的g因子值, Free QED代表自由(电子)QED效应贡献, BS-QED代表束缚态(电子)QED效应贡献, FNS代表核尺寸效应贡献, NR代表核反冲效应贡献, Hadronic代表强子效应贡献. 12C5+, 16O7+, 28Si13数据来自于文献[10], 20Ne9+的数据来自于文献[12], 118Sn49+的数据来自于文献[13].
    DownLoad: CSV

    表 2  28Si11+, 40Ca17+40Ar13+基态g因子计算与实验数据表

    Table 2.  Theoretical and experimental g factors of 28Si11+, 40Ca17+ and 40Ar13+.

    28Si11+ 40Ca17+ 40Ar13
    gDirac 1.9982547533 1.9964260253 0.66377545
    QED 0.0023202857 (17) 0.0023216601(17) –0.0007682(4)
    e-e int. 0.000314 8098 (22) 0.0004542910 (24) 0.0006500(2)
    FNS + NR 0.0000000436 0.0000000662 –0.0000091(2)
    gtheo 2.000889 8924 (28) 1.9992020426 (29) 0.6636482 (5)
    gexp 2.00088988845 (14) 1.9992020405 (11) 0.66364845532(93)
    注: QED代表经过屏蔽势修正后的束缚态QED效应, e-e int.代表电子-电子关联效应贡献; 28Si11+40Ca17+数据来自于文献[23], 40Ar13数据来自于文献[24].
    DownLoad: CSV

    表 3  20Ne9+22Ne9+基态g因子差以及相关核效应贡献的计算值, 数据来自文献[28]

    Table 3.  Contributions of the g-factor difference of 20Ne9+ and 22Ne9+ as well as the experimental result, from Ref. [28]

    效应贡献 $ {{\Delta }}g=g\left({}_{}{}^{20}{{\mathrm{N}}{\mathrm{e}}}_{}^{9+}\right)-g\left({}_{}{}^{22}{{\mathrm{N}}{\mathrm{e}}}_{}^{9+}\right) $
    ($ \times {10}^{-9} $)
    FNS 0.166(11)
    Recoil, non-QED 13.2827
    Recoil, QED 0.0435
    Recoil, (α/π)(me/M) –0.0103
    Recoil, (me/M)2 –0.0077
    Nuclear polarization 0.0001(3)
    Δg total theory 13.474(11)
    Δg experiment 13.47524(53)stat(99)sys
    DownLoad: CSV
  • [1]

    Landé A 1921 Z. Für Phys. 5 231

    [2]

    Kusch P, Foley H M 1947 Phys. Rev. 72 1256

    [3]

    Kinoshita T 1990 Advanced Series on Directions in HighEnergy Physics (Singapore: World Scientific) pp218-321

    [4]

    Schwinger J 1948 Phys. Rev. 73 416Google Scholar

    [5]

    Laporta S, Remiddi E 1996 Phys. Lett. B 379 283Google Scholar

    [6]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807Google Scholar

    [7]

    Fan X, Myers T G, Sukra B A D, Gabrielse G 2023 Phys. Rev. Lett. 130 071801Google Scholar

    [8]

    Shabaev V M, Glazov D A, Plunien G, Volotka A V 2015 J. Phys. Chem. Ref. Data 44 031205Google Scholar

    [9]

    Breit G 1928 Nature 122 649

    [10]

    Werth G, Sturm S, Blaum K 2018 Adv. At. Mol. Opt. Phys. 67 257

    [11]

    Sturm S, Arapoglou I, Egl A, Höcker M, Kraemer S, Sailer T, Tu B, Weigel A, Wolf R, López-Urrutia J C, Blaum K 2019 Eur. Phys. J. Spec. Top. 227 1425Google Scholar

    [12]

    Heiße F, Door M, Sailer T, Filianin P, Herkenhoff J, König C M, Kromer K, Lange D, Morgner J, Rischka A, Schweiger C, Tu B, Novikov Y N, Eliseev S, Sturm S, Blaum K 2023 Phys. Rev. Lett. 131 253002Google Scholar

    [13]

    Morgner J, Tu B, König C M, Sailer T, Heiße F, Bekker H, Sikora B, Lyu C, Yerokhin V A, Harman Z, Crespo López-Urrutia J R, Keitel C H, Sturm S, Blaum K 2023 Nature 622 53Google Scholar

    [14]

    Brown L S, Gabrielse G 1986 Rev. Mod. Phys. 58 233Google Scholar

    [15]

    Tu B, Si R, Shen Y, Wang J, Wei B, Chen C, Yao K, Zou Y 2023 Phys. Rev. Res. 5 043014Google Scholar

    [16]

    Hermanspahn N, Häffner H, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 84 427Google Scholar

    [17]

    Sturm S, Wagner A, Schabinger B, Blaum K 2011 Phys. Rev. Lett. 107 143003Google Scholar

    [18]

    Häffner H, Beier T, Hermanspahn N, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 85 5308Google Scholar

    [19]

    Verdú J, Djekić S, Stahl S, Valenzuela T, Vogel M, Werth G, Beier T, Kluge H J, Quint W 2004 Phys. Rev. Lett. 92 093002Google Scholar

    [20]

    Sturm S, Wagner A, Schabinger B, Zatorski J, Harman Z, Quint W, Werth G, Keitel C H, Blaum K 2011 Phys. Rev. Lett. 107 023002Google Scholar

    [21]

    Martínez A J G, López-Urrutia J R C, Fischer D, Orts R S, Ullrich J 2007 J. Phys. Conf. Ser. 72 012001Google Scholar

    [22]

    Zinenko D V, Glazov D A, Kosheleva V P, Volotka A V, Fritzsche S 2023 Phys. Rev. A 107 032815Google Scholar

    [23]

    Kosheleva V P, Volotka A V, Glazov D A, Zinenko D V, Fritzsche S 2022 Phys. Rev. Lett. 128 103001Google Scholar

    [24]

    Arapoglou I, Egl A, Höcker M, Sailer T, Tu B, Weigel A, Wolf R, Cakir H, Yerokhin V A, Oreshkina N S, Agababaev V A, Volotka A V, Zinenko D V, Glazov D A, Harman Z, Keitel C H, Sturm S, Blaum K 2019 Phys. Rev. Lett. 122 253001Google Scholar

    [25]

    Shabaev V M, Glazov D A, Oreshkina N S, Volotka A V, Plunien G, Kluge H J, Quint W 2006 Phys. Rev. Lett. 96 253002Google Scholar

    [26]

    Yerokhin V A, Berseneva E, Harman Z, Tupitsyn I I, Keitel C H 2016 Phys. Rev. Lett. 116 100801Google Scholar

    [27]

    Köhler F, Blaum K, Block M, Chenmarev S, Eliseev S, Glazov D A, Goncharov M, Hou J, Kracke A, Nesterenko D A, Novikov Y N, Quint W, Minaya Ramirez E, Shabaev V M, Sturm S, Volotka A V, Werth G 2016 Nat. Commun. 7 10246Google Scholar

    [28]

    Sailer T, Debierre V, Harman Z, Heiße F, König C, Morgner J, Tu B, Volotka A V, Keitel C H, Blaum K, Sturm S 2022 Nature 606 479Google Scholar

    [29]

    Debierre V, Keitel C H, Harman Z 2020 Phys. Lett. B 807 135527Google Scholar

    [30]

    Schneider A, Sikora B, Dickopf S, Müller M, Oreshkina N S, Rischka A, Valuev I A, Ulmer S, Walz J, Harman Z, Keitel C H, Mooser A, Blaum K 2022 Nature 606 878Google Scholar

    [31]

    Kaiser A, Dickopf S, Door M, Behr R, Beutel U, Eliseev S, Kaushik A, Kromer K, Müller M, Palafox L, Ulmer S, Mooser A, Blaum K 2024 Appl. Phys. Lett. 124 224002Google Scholar

    [32]

    Devlin J A, Wursten E, Harrington J A, Higuchi T, Blessing P E, Borchert M J, Erlewein S, Hansen J J, Morgner J, Bohman M A, Mooser A H, Smorra C, Wiesinger M, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Ulmer S 2019 Phys. Rev. Appl. 12 , 044012 DOI: 10.1103/PhysRevApplied.12.044012

    [33]

    Ketter J, Eronen T, Höcker M, Streubel S, Blaum K 2014 Int. J. Mass Spectrom. 358 1Google Scholar

    [34]

    Tu B, Hahne F, Arapoglou I, Egl A, Heiße F, Höcker M, König C, Morgner J, Sailer T, Weigel A, Wolf R, Sturm S 2021 Adv. Quantum Technol. 4 2100029Google Scholar

    [35]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, BASE Collaboration 2021 Nature 596 514Google Scholar

    [36]

    Will C, Wiesinger M, Micke P, Yildiz H, Driscoll T, Kommu S, Abbass F, Arndt B P, Bauer B B, Erlewein S, Fleck M, Jäger J I, Latacz B M, Mooser A, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Devlin J A, Ospelkaus C, Quint W, Soter A, Walz J, Smorra C, Ulmer S 2024 Phys. Rev. Lett. 133 023002Google Scholar

  • [1] WU Lielie, REN Yichong, Xue Fei. Ferromagnetic torsion pendulum oscillator based magnetic field measurement and its applications. Acta Physica Sinica, 2025, 74(3): 030701. doi: 10.7498/aps.74.20241538
    [2] Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Research progress of lock-in amplifiers. Acta Physica Sinica, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [3] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [4] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [5] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [6] Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe. Accurate measurement of optical fiber time delay based on frequency domain reflectometry. Acta Physica Sinica, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [7] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [9] Tan Wen-Hai, Wang Jian-Bo, Shao Cheng-Gang, Tu Liang-Cheng, Yang Shan-Qing, Luo Peng-Shun, Luo Jun. Recent progress in testing Newtonian inverse square law at short range. Acta Physica Sinica, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [10] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [11] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [12] Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin. 40Ca+ optical frequency standards with high accuracy. Acta Physica Sinica, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [13] Li Ming, Yao Ning, Feng Zhi-Bo, Han Hong-Pei, Zhao Zheng-Yin. Effects of external electric field and Al content on g factor of wurtzite AlGaN/GaN quantum wells. Acta Physica Sinica, 2018, 67(5): 057101. doi: 10.7498/aps.67.20172213
    [14] Liu Jian-Ping, Wu Jun-Fei, Li Qing, Xue Chao, Mao De-Kai, Yang Shan-Qing, Shao Cheng-Gang, Tu Liang-Cheng, Hu Zhong-Kun, Luo Jun. Progress on the precision measurement of the Newtonian gravitational constant G. Acta Physica Sinica, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [15] Mu Xiu-Li, Li Chuan-Liang, Deng Lun-Hua, Wang Hai-Ling. Spectra of I2+ for possible measurement of α and μ constant. Acta Physica Sinica, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [16] Wang Jin-Tao, Liu Zi-Yong. Method of accurately measuring silicon sphere density difference based on hydrostatic suspension principls. Acta Physica Sinica, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [17] Wei Lai-Ming, Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Liu Xin-Zhi, Lin Tie, Guo Shao-Ling, Dai Ning, Chu Jun-Hao, Austing David Guy. Effective g-factor in high-mobility InGaAs/InP Quantum well. Acta Physica Sinica, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [18] Xu Hai-Hong, Jiao Zhong-Xing, Liu Xiao-Dong, Lei Liang, Wen Jin-Hui, Wang Hui, Lin Wei-Zhu, Lai Tian-Shu. Studies on the temperature and energy dependence of g factor in GaAs by femtosecond laser absorption quantum beats. Acta Physica Sinica, 2006, 55(5): 2618-2622. doi: 10.7498/aps.55.2618
    [19] Yang Liu, Yin Chun-Hao, Jiao Yang, Zhang Lei, Song Ning, Ru Rui-Peng. Spectrum structure and g factor of electron paramagnetic resonance of LiCoO2 crystal doped with Ni. Acta Physica Sinica, 2006, 55(4): 1991-1996. doi: 10.7498/aps.55.1991
    [20] Zhang Hong-Mei, Ma Dong-Ping, Liu De. . Acta Physica Sinica, 2002, 51(7): 1554-1558. doi: 10.7498/aps.51.1554
Metrics
  • Abstract views:  1415
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2024
  • Accepted Date:  13 September 2024
  • Available Online:  18 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回