Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision g-factor measurements of a bound-state electron in few-electron ions

Bingsheng Ti

Citation:

Precision g-factor measurements of a bound-state electron in few-electron ions

Bingsheng Ti
PDF
Get Citation
  • The electron g factor is a crucial fundamental structural parameter in atomic physics, as it reveals various mechanisms of electron interactions with external fields. Precise measurements of g factors of electrons bound in simple atomic and molecular systems offer an effective avenue for investigating bound-state Quantum Electrodynamics (QED) theories. Especially in highly-charged heavy ions (HCIs), the strong electromagnetic interactions between the nucleus and inner-shell electrons provide unique opportunities to test QED under extremely strong fields. Accurate measurements of the g factors of the bound-state electron are also crucial for determining nuclear effects, nuclear parameters and fundamental constants, making it a frontier topic fundamental physics. A Penning trap, which uses steady-state electromagnetic fields to confine charged particles, is utilized to perform precision g-factor measurements. This paper presents a comprehensive review of g-factor experiments for few-electron simple systems in Penning traps, covering a summary of the experimental principles, experimental setups, measurement methods, and significant research findings.
    The introduction outlines the physical concept of the electron g factor and its historical research background. The electron g factor is considered as an effective probe to study higher-order QED effects. Through high-precision measurements of the free electron g-factor, discrepancies between the fine-structure constant and other experimental results in atomic physics have been identified. Notably, the g factor of the 1s electron in HCIs deviates significantly from the value for free electrons as the atomic number increases. Experimental principles, including the principle of the Penning trap and the measurement principle of the bound-state electron g factors are discussed. A double-trap experiment setup and related precision measurement techniques are also introduced.
    This paper reviews several milestone experimental results including: (1) the stringent test of bound-state QED with a precision measurement of bound-state electron g factor of 118Sn49+ ion, (2) the g-factor measurements of lithium-like and boron-like ions and their applications, (3) the g-factor isotope shift measurement with an advanced two-ion balance technique in the Penning trap, providing insight into the QED effects in nuclear recoil. Finally, this paper summarizes the current challenges faced in the g-factor measurements of a bound-state electron in few-electron ion systems and offers an outlook on future developments in the field.
  • [1]

    Landé A 1921 Z. Für Phys. 5 231

    [2]

    Kusch P, Foley H M 1947 Phys. Rev. 72 1256

    [3]

    Kinoshita T 1990 Adv. Ser. Dir. High Energy Phys., 1990-07 pp218–321

    [4]

    Schwinger J 1948 Phys. Rev. 73 416

    [5]

    Laporta S, Remiddi E 1996 Phys. Lett. B 379 283

    [6]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807

    [7]

    Fan X, Myers T G, Sukra B A D, Gabrielse G 2023 Phys. Rev. Lett. 130 071801

    [8]

    Shabaev V M, Glazov D A, Plunien G, Volotka A V 2015 J. Phys. Chem. Ref. Data 44 031205

    [9]

    Breit G 1928 Nature 122 649

    [10]

    Werth G, Sturm S, Blaum K 2018 Adv. At. Mol. Opt. Phys., 2018 pp257–296

    [11]

    Sturm S, Arapoglou I, Egl A, Höcker M, Kraemer S, Sailer T, Tu B, Weigel A, Wolf R, López-Urrutia J C, Blaum K 2019 Eur. Phys. J. Spec. Top. 227 1425

    [12]

    Heiße F, Door M, Sailer T, Filianin P, Herkenhoff J, König C M, Kromer K, Lange D, Morgner J, Rischka A, Schweiger Ch, Tu B, Novikov Y N, Eliseev S, Sturm S, Blaum K 2023 Phys. Rev. Lett. 131 253002

    [13]

    Morgner J, Tu B, König C M, Sailer T, Heiße F, Bekker H, Sikora B, Lyu C, Yerokhin V A, Harman Z, Crespo López-Urrutia J R, Keitel C H, Sturm S, Blaum K 2023 Nature 622 53

    [14]

    Brown L S, Gabrielse G 1986 Rev. Mod. Phys. 58 233

    [15]

    Tu B, Si R, Shen Y, Wang J, Wei B, Chen C, Yao K, Zou Y 2023 Phys. Rev. Res. 5 043014

    [16]

    Hermanspahn N, Häffner H, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 84 427

    [17]

    Sturm S, Wagner A, Schabinger B, Blaum K 2011 Phys. Rev. Lett. 107 143003

    [18]

    Häffner H, Beier T, Hermanspahn N, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 85 5308

    [19]

    Verdú J, Djekić S, Stahl S, Valenzuela T, Vogel M, Werth G, Beier T, Kluge H J, Quint W 2004 Phys. Rev. Lett. 92 093002

    [20]

    Sturm S, Wagner A, Schabinger B, Zatorski J, Harman Z, Quint W, Werth G, Keitel C H, Blaum K 2011 Phys. Rev. Lett. 107 023002

    [21]

    Martínez A J G, López-Urrutia J R C, Fischer D, Orts R S, Ullrich J 2007 J. Phys. Conf. Ser. 72 012001

    [22]

    Zinenko D V, Glazov D A, Kosheleva V P, Volotka A V, Fritzsche S 2023 Phys. Rev. A 107 032815

    [23]

    Kosheleva V P, Volotka A V, Glazov D A, Zinenko D V, Fritzsche S 2022 Phys. Rev. Lett. 128 103001

    [24]

    Arapoglou I, Egl A, Höcker M, Sailer T, Tu B, Weigel A, Wolf R, Cakir H, Yerokhin V A, Oreshkina N S, Agababaev V A, Volotka A V, Zinenko D V, Glazov D A, Harman Z, Keitel C H, Sturm S, Blaum K 2019 Phys. Rev. Lett. 122 253001

    [25]

    Shabaev V M, Glazov D A, Oreshkina N S, Volotka A V, Plunien G, Kluge H J, Quint W 2006 Phys. Rev. Lett. 96 253002

    [26]

    Yerokhin V A, Berseneva E, Harman Z, Tupitsyn I I, Keitel C H 2016 Phys. Rev. Lett. 116 100801

    [27]

    Köhler F, Blaum K, Block M, Chenmarev S, Eliseev S, Glazov D A, Goncharov M, Hou J, Kracke A, Nesterenko D A, Novikov Y N, Quint W, Minaya Ramirez E, Shabaev V M, Sturm S, Volotka A V, Werth G 2016 Nat. Commun. 7 10246

    [28]

    Sailer T, Debierre V, Harman Z, Heiße F, König C, Morgner J, Tu B, Volotka A V, Keitel C H, Blaum K, Sturm S 2022 Nature 606 479

    [29]

    Debierre V, Keitel C H, Harman Z 2020 Phys. Lett. B 807 135527

    [30]

    Schneider A, Sikora B, Dickopf S, Müller M, Oreshkina N S, Rischka A, Valuev I A, Ulmer S, Walz J, Harman Z, Keitel C H, Mooser A, Blaum K 2022 Nature 606 878

    [31]

    Kaiser A, Dickopf S, Door M, Behr R, Beutel U, Eliseev S, Kaushik A, Kromer K, Mu M 2024 Appl. Phys. Lett.

    [32]

    Devlin J A, Wursten E, Harrington J A, Higuchi T, Blessing P E, Borchert M J, Erlewein S, Hansen J J, Morgner J, Bohman M A, Mooser A H, Smorra C, Wiesinger M, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Ulmer S 2019

    [33]

    Ketter J 2014 Int. J. Mass Spectrom.

    [34]

    Tu B, Hahne F, Arapoglou I, Egl A, Heiße F, Höcker M, König C, Morgner J, Sailer T, Weigel A, Wolf R, Sturm S 2021

    [35]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, BASE Collaboration 2021 Nature 596 514

    [36]

    Will C, Wiesinger M, Micke P, Yildiz H, Driscoll T, Kommu S, Abbass F, Arndt B P, Bauer B B, Erlewein S, Fleck M, Jäger J I, Latacz B M, Mooser A, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Devlin J A, Ospelkaus C, Quint W, Soter A, Walz J, Smorra C, Ulmer S 2024 Phys. Rev. Lett.

  • [1] Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Research progress of lock-in amplifiers. Acta Physica Sinica, doi: 10.7498/aps.72.20230579
    [2] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, doi: 10.7498/aps.72.20231179
    [3] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, doi: 10.7498/aps.71.20211663
    [4] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, doi: 10.7498/aps.70.20201833
    [5] Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe. Accurate measurement of optical fiber time delay based on frequency domain reflectometry. Acta Physica Sinica, doi: 10.7498/aps.70.20201075
    [6] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, doi: 10.7498/aps.70.20211663
    [7] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, doi: 10.7498/aps.67.20180621
    [8] Tan Wen-Hai, Wang Jian-Bo, Shao Cheng-Gang, Tu Liang-Cheng, Yang Shan-Qing, Luo Peng-Shun, Luo Jun. Recent progress in testing Newtonian inverse square law at short range. Acta Physica Sinica, doi: 10.7498/aps.67.20180636
    [9] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, doi: 10.7498/aps.67.20171914
    [10] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, doi: 10.7498/aps.67.20181084
    [11] Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin. 40Ca+ optical frequency standards with high accuracy. Acta Physica Sinica, doi: 10.7498/aps.67.20180876
    [12] Li Ming, Yao Ning, Feng Zhi-Bo, Han Hong-Pei, Zhao Zheng-Yin. Effects of external electric field and Al content on g factor of wurtzite AlGaN/GaN quantum wells. Acta Physica Sinica, doi: 10.7498/aps.67.20172213
    [13] Liu Jian-Ping, Wu Jun-Fei, Li Qing, Xue Chao, Mao De-Kai, Yang Shan-Qing, Shao Cheng-Gang, Tu Liang-Cheng, Hu Zhong-Kun, Luo Jun. Progress on the precision measurement of the Newtonian gravitational constant G. Acta Physica Sinica, doi: 10.7498/aps.67.20181381
    [14] Mu Xiu-Li, Li Chuan-Liang, Deng Lun-Hua, Wang Hai-Ling. Spectra of I2+ for possible measurement of α and μ constant. Acta Physica Sinica, doi: 10.7498/aps.66.233301
    [15] Wang Jin-Tao, Liu Zi-Yong. Method of accurately measuring silicon sphere density difference based on hydrostatic suspension principls. Acta Physica Sinica, doi: 10.7498/aps.62.037702
    [16] Wei Lai-Ming, Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Liu Xin-Zhi, Lin Tie, Guo Shao-Ling, Dai Ning, Chu Jun-Hao, Austing David Guy. Effective g-factor in high-mobility InGaAs/InP Quantum well. Acta Physica Sinica, doi: 10.7498/aps.61.127102
    [17] Yang Zhi-Hu, Zhang Xiao-An, Zhao Yong-Tao, Yin Wei-Wei, Li Ning-Xi. Precision measurement of excited spectra of oxygen ions. Acta Physica Sinica, doi: 10.7498/aps.55.4520
    [18] Yang Liu, Yin Chun-Hao, Jiao Yang, Zhang Lei, Song Ning, Ru Rui-Peng. Spectrum structure and g factor of electron paramagnetic resonance of LiCoO2 crystal doped with Ni. Acta Physica Sinica, doi: 10.7498/aps.55.1991
    [19] Xu Hai-Hong, Jiao Zhong-Xing, Liu Xiao-Dong, Lei Liang, Wen Jin-Hui, Wang Hui, Lin Wei-Zhu, Lai Tian-Shu. Studies on the temperature and energy dependence of g factor in GaAs by femtosecond laser absorption quantum beats. Acta Physica Sinica, doi: 10.7498/aps.55.2618
    [20] Zhang Hong-Mei, Ma Dong-Ping, Liu De. . Acta Physica Sinica, doi: 10.7498/aps.51.1554
Metrics
  • Abstract views:  7
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  18 September 2024

/

返回文章
返回