Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review of the Hyperfine Structure Theory of Hydrogen Molecular Ions

Zhong Zhen-Xiang

Citation:

Review of the Hyperfine Structure Theory of Hydrogen Molecular Ions

Zhong Zhen-Xiang
PDF
Get Citation
  • The study of high-precision spectroscopy for hydrogen molecular ions enables the determination of fundamental constants, such as the proton-to-electron mass ratio, the deuteron-to-electron mass ratio, the Rydberg constant, and the charge radii of proton and deuteron. This can be accomplished through a combination of high precision experimental measurements and theoretical calculations. The spectroscopy of hydrogen molecular ions reveals abundant hyperfine splittings, necessitating not only an understanding of rovibrational transition frequencies but also a thorough grasp of hyperfine structure theory to extract meaningful physical information from the spectra. This article reviews the history of experiments and theories related to the spectroscopy of hydrogen molecular ions, with a particular focus on the theory of hyperfine structure. As far back as the second half of the last century, the hyperfine structure of hydrogen molecular ions was described by a comprehensive theory based on its leading-order term, known as the Breit-Pauli Hamiltonian. Thanks to the advancements in non-relativistic quantum electrodynamics (NRQED) at the beginning of this century, a systematic development of next-to-leading-order theory for hyperfine structure has been achieved and applied to H2+ and HD+ in recent years, including the establishment of the 7ln(α) order correction. For the hyperfine structure of H2+, theoretical calculations show good agreement with experimental measurements after decades of work. However, for HD+, discrepancies have been observed between measurements and theoretical predictions that cannot be accounted for by the theoretical uncertainty in the non-logarithmic term of the 7 order correction. To address this issue, additional experimental measurements are needed for mutual validation, as well as independent tests of the theory, particularly regarding the non-logarithmic term of the 7 order correction.
  • [1]

    Liu C P 2020 Quantum Chemistry (Beijing:Science Press) (in Chinese) [刘成卜2020量子化学(北京:科学出版社)]

    [2]

    Zeng J Y 2007 Quantum Mechanics (Beijing:Science Press) p.473(in Chinese) [曾谨言2007量子力学, vol. 1(北京:科学出版社)第473页]

    [3]

    Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 361488

    [4]

    Schiller S, Korobov V 2005 Phys. Rev. A 71032505

    [5]

    Liu J, Salumbides E J, Hollenstein U, Koelemeij J C J, Eikema K S E, Ubachs W, Merkt F 2009 J. Chem. Phys. 130

    [6]

    Sprecher D, Liu J, Jungen C, Ubachs W, Merkt F 2010 J. Chem. Phys. 133

    [7]

    Cheng C F, Hussels J, Niu M, Bethlem H, Eikema K, Salumbides E, Ubachs W, Beyer M, Hölsch N, Agner J, Merkt F, Tao L G, Hu S M, Jungen C 2018 Phys. Rev. Lett. 121013001

    [8]

    Tao L G, Liu A W, Pachucki K, Komasa J, Sun Y, Wang J, Hu S M 2018 Phys. Rev. Lett. 120153001

    [9]

    Liu Q H, Tan Y, Cheng C F, Hu S M 2023 Phys. Chem. Chem. Phys. 2527914

    [10]

    Wang L M, Yan Z C 2018 Phys. Rev. A 97060501

    [11]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125253001

    [12]

    Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95183002

    [13]

    Koelemeij J C J, Noom D W E, de Jong D, Haddad M A, Ubachs W 2012 Appl. Phys. B: Lasers Opt. 1071075

    [14]

    Karr J P, Bielsa F, Valenzuela T, Douillet A, Hilico L, Korobov V I 2007 Can. J. Phys. 85497

    [15]

    Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107043101

    [16]

    Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98173002

    [17]

    Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 191263

    [18]

    Biesheuvel J, Karr J P, Hilico L, Eikema K S E, Ubachs W, Koelemeij J C J 2016 Nat. Commun. 710385

    [19]

    Korobov V I, Hilico L, Karr J P 2014 Phys. Rev. Lett. 112103003

    [20]

    Korobov V I, Hilico L, Karr J P 2014 Phys. Rev. A 89032511

    [21]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 841527

    [22]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 Rev. Mod. Phys. 93025010

    [23]

    Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581152

    [24]

    Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 3691238

    [25]

    Köhler F, Sturm S, Kracke A, Werth G, Quint W, Blaum K 2015 J. Phys. B: At., Mol. Opt. Phys. 48144032

    [26]

    Rau S, Heiße F, Köhler-Langes F, Sasidharan S, Haas R, Renisch D, Düllmann C E, Quint W, Sturm S, Blaum K 2020 Nature 58543

    [27]

    Korobov V I 2000 Phys. Rev. A 61064503

    [28]

    Yan Z C, Zhang J Y, Li Y 2003 Phys. Rev. A 67062504

    [29]

    Li H, Wu J, Zhou B L, Zhu J M, Yan Z C 2007 Phys. Rev. A 75012504

    [30]

    Zhong Z X, Yan Z C, Shi T Y 2009 Phys. Rev. A 79064502

    [31]

    Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86064502

    [32]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2016 Phys. Rev. A 93032507

    [33]

    Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99012501

    [34]

    Korobov V I 2004 Phys. Rev. A 70012505

    [35]

    Korobov V I 2006 Phys. Rev. A 73024502

    [36]

    Korobov V I 2012 Phys. Rev. A 85042514

    [37]

    Korobov V I, Zhong Z X 2012 Phys. Rev. A 86044501

    [38]

    Zhong Z X, Yan Z C, Shi T Y 2013 Phys. Rev. A 88052520

    [39]

    Korobov V I, Tsogbayar T 2007 J. Phys. B: At., Mol. Opt. Phys. 402661

    [40]

    Korobov V I, Hilico L, Karr J P 2017 Phys. Rev. Lett. 118233001

    [41]

    Korobov V I, Karr J P 2021 Phys. Rev. A 104032806

    [42]

    Koelemeij J C J 2022 Mol. Phys. 120 e2058637

    [43]

    Dalgarno A, Patterson T N, B S W 1960 Proc. R. Soc. A 259100

    [44]

    Babb J F, Dalgarno A 1991 Phys. Rev. Lett. 66880

    [45]

    Babb J F, Dalgarno A 1992 Phys. Rev. A 46 R5317

    [46]

    Babb J F 1995 Phys. Rev. Lett. 754377

    [47]

    Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97243001

    [48]

    Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102022804

    [49]

    Karr J P, Haidar M, Hilico L, Zhong Z X, Korobov V I 2020 Phys. Rev. A 102052827

    [50]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106042815

    [51]

    Korobov V I, Hilico L, Karr J P 2006 Phys. Rev. A 74040502

    [52]

    Jefferts K B 1969 Phys. Rev. Lett. 231476

    [53]

    Fu Z W, Hessels E A, Lundeen S R 1992 Phys. Rev. A 46 R5313

    [54]

    Osterwalder A, Wüest A, Merkt F, Jungen C 2004 J. Chem. Phys. 12111810

    [55]

    Luke S K 1969 Astrophys. J. 156761

    [56]

    McEachran R, Veenstra C, Cohen M 1978 Chem. Phys. Lett. 59275

    [57]

    Korobov V I, Hilico L, Karr J P 2009 Phys. Rev. A 79012501

    [58]

    Korobov V I, Koelemeij J C J, Hilico L, Karr J P 2016 Phys. Rev. Lett. 116053003

    [59]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106022816

    [60]

    Babb J F 1998 In Cho Y M, Hong J B, Yang C N, editors, Current topics in physics, vol. 2(Singapore: World Scientiffc), pp 531–540

    [61]

    Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88032519

    [62]

    Korobov V I 2006 Phys. Rev. A 74052506

    [63]

    Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14555

    [64]

    Kortunov I V, Alighanbari S, Hansen M G, Giri G S, Korobov V I, Schiller S 2021 Nat. Phys. 17569

    [65]

    Schenkel M R, Alighanbari S, Schiller S 2024 Nat. Phys. 20383

    [66]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88035009

    [67]

    Germann M, Patra S, Karr J P, Hilico L, Korobov V I, Salumbides E J, Eikema K S E, Ubachs W, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028

    [68]

    Heiße F, Köhler-Langes F, Rau S, Hou J, Junck S, Kracke A, Mooser A, Quint W, Ulmer S, Werth G, Blaum K, Sturm S 2017 Phys. Rev. Lett. 119033001

    [69]

    Stone A P 1961 Proc. Phys. Soc., London 77786

    [70]

    Stone A P 1963 Proc. Phys. Soc., London 81868

    [71]

    Volkov S 2018 Phys. Rev. D 98076018

    [72]

    Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98032502

    [73]

    Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101022501

    [74]

    Bethe H A, Salpeter E E 1957 Quantum Mechanics of One- and Two-Electron Atoms (New York, NY: Springer Berlin Heidelberg)

    [75]

    Kinoshita T 1990 Quantum Electrodynamics (WORLD SCIENTIFIC)

    [76]

    Kinoshita T, Nio M 1996 Phys. Rev. D 534909

    [77]

    Eides M I, Grotch H, Shelyuto V A 2007 Theory of Light Hydrogenic Bound States (Springer Berlin Heidelberg)

    [78]

    Mondéjar J, Piclum J H, Czarnecki A 2010 Phys. Rev. A 81062511

    [79]

    Carlson C E, Nazaryan V, Grifffoen K 2008 Phys. Rev. A 78022517

    [80]

    Zemach A C 1956 Phys. Rev. 1041771

    [81]

    Karshenboim S G 1997 Phys. Lett. A 22597

    [82]

    Faustov R, Martynenko A 2002 Eur. Phys. J. C 24281

    [83]

    Friar J L, Payne G L 2005 Phys. Rev. C 72014002

    [84]

    Friar J, Sick I 2004 Phys. Lett. B 579285

    [85]

    Bodwin G T, Yennie D R 1988 Phys. Rev. D 37498

    [86]

    Karshenboim S G 2005 Phys. Rep. 4221

    [87]

    Yan Z C, Drake G W F 1994 Can. J. Phys. 72822

    [88]

    Yan Z C, Drake G 1996 Chem. Phys. Lett. 25996

    [89]

    Korobov V I 2002 J. Phys. B: At., Mol. Opt. Phys. 351959

    [90]

    Harris F E, Frolov A M, Smith V H 2004 J. Chem. Phys. 1216323

    [91]

    Dalgarno A, Lewis J T 1955 Proc. R. Soc. A 23370

    [92]

    Lewis M L, Seraffno P H 1978 Phys. Rev. A 18867

    [93]

    Karr J P, Bielsa F, Douillet A, Gutierrez J P, Korobov V I, Hilico L 2008 Phys. Rev. A 77063410

    [94]

    Menasian S C, Dehmelt H G 1973 Bull. Am. Phys. Soc. 18408

    [95]

    Varshalovich D A, Moskalev A N, Khersonskii V K 1988 Quantum Theory of Angular Momentum (WORLD SCIENTIFIC)

    [96]

    Lindgren I, Morrison J 1982 Atomic Many-Body Theory (Springer Berlin Heidelberg)

  • [1] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Precision Spectroscopy of the 2P1/2-2P3/2 Transition in Boron-like Highly Charged Ions: Experiment and Theory. Acta Physica Sinica, doi: 10.7498/aps.73.20241190
    [2] Ji Chen. Nuclear structure effects to atomic Lamb shift and hyperfine splitting. Acta Physica Sinica, doi: 10.7498/aps.73.20241063
    [3] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, doi: 10.7498/aps.72.20222401
    [4] Chen Run, Shao Xu-Ping, Huang Yun-Xia, Yang Xiao-Hua. Simulation of hyperfine-rotational spectrum of electromagnetic dipole transition rotation of BrF molecules. Acta Physica Sinica, doi: 10.7498/aps.72.20221957
    [5] Tang Jia-Dong, Liu Qian-Hao, Cheng Cun-Feng, Hu Shui-Ming. Hyperfine structure of ro-vibrational transition of HD in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.70.20210512
    [6] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, doi: 10.7498/aps.68.20182136
    [7] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, doi: 10.7498/aps.66.193701
    [8] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min. Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, doi: 10.7498/aps.65.073103
    [9] Yu Zu-Qing, Yang Wei-Ji, He Feng. Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective. Acta Physica Sinica, doi: 10.7498/aps.65.204202
    [10] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, doi: 10.7498/aps.63.198202
    [11] Cui Wei, Wang Chong, Cui Can, Shi Zhang-Sheng, Yang Yu. Asymmetry of hole states in vertically coupled Ge double quantum dot. Acta Physica Sinica, doi: 10.7498/aps.63.227301
    [12] Jiang Hong-Liang, Zhang Rong-Jun, Zhou Hong-Ming, Yao Duan-Zheng, Xiong Gui-Guang. Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots. Acta Physica Sinica, doi: 10.7498/aps.60.017204
    [13] Yang Bao-Dong, Gao Jing, Wang Jie, Zhang Tian-Cai, Wang Jun-Min. Multiple electromagnetically-induced transparency of hyperfine levels in cesium 6S1/2 -6P3/2 -8S1/2 ladder-type system. Acta Physica Sinica, doi: 10.7498/aps.60.114207
    [14] Hou Bi-Hui, Li Yong, Liu Guo-Qing, Zhang Gui-Hua, Liu Feng-Yan, Tao Shi-Quan. ESR study of the Mn2+ center in LiNbO3. Acta Physica Sinica, doi: 10.7498/aps.54.373
    [15] Chen Sui-Yuan, Liu Chang-Sheng, Li Hui-Li, Cui Tong. Hyperfine stucture during nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy irradiated by laser. Acta Physica Sinica, doi: 10.7498/aps.54.4157
    [16] Wang Li-Jun, Yu Hui-Ying. The coherent excitation property of a two-level atom w itha hyperfine structure in narrow band laser field. Acta Physica Sinica, doi: 10.7498/aps.53.4151
    [17] Ma Hong-Liang, Lu Jiang, Wang Chun-Tao. Measurement of hyperfine structure spectrum in 56908 nm line of 141Pr+. Acta Physica Sinica, doi: 10.7498/aps.52.566
    [18] Zhao Lu-Ming, Wang Li-Jun. . Acta Physica Sinica, doi: 10.7498/aps.51.1227
    [19] LI GUANG-WU, MA HONG-LIANG, LI MAO-SHENG, CHEN ZHI-JUN, CHEN MIAO-HUA, LU FU-QUAN, PENG XIAN-JUE, YANG FU-JIA. HYPERFINE STRUCTURE MEASUREMENT IN LaⅡ5d2 1G4 →4f5d 1F3. Acta Physica Sinica, doi: 10.7498/aps.49.1256
    [20] JIANG YONG, LI GUANG, ZENG XIANG-YONG, YANG YING-PING, YUAN SONG-LIU, JIN SI-ZHAO. ELECTRONIC SPIN RESONANCE STUDY OF PEROVSKITE-TYPE MANGANITES. Acta Physica Sinica, doi: 10.7498/aps.49.1846
Metrics
  • Abstract views:  30
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  26 September 2024

/

返回文章
返回