Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dissociation dynamic study of $\text{H}_2^+$ in time-delayed two-color femtosecond lasers

Wang Jing-Zhe Dong Fu-Long Liu Jie

Citation:

Dissociation dynamic study of $\text{H}_2^+$ in time-delayed two-color femtosecond lasers

Wang Jing-Zhe, Dong Fu-Long, Liu Jie
cstr: 32037.14.aps.73.20241283
PDF
HTML
Get Citation
  • In recent years, the rapid development of ultrashort pulse laser technology has made it possible to regulate the ionization and dissociation dynamics of atoms and molecules. Among them, the microscopic dynamics of molecular dissociation have always been a hot topic. The phenomenon of molecular dissociation, which is caused by the interaction between femtosecond intense laser fields and $\text{H}_2^+$ molecules, has attracted widespread attention. Previous theoretical studies on the dissociation of $\text{H}_2^+$ molecules mainly focused on studying its dissociation dynamics through numerical calculations, with relatively few theoretical models. This paper aims to establish a simple classical model to describe the dissociation dynamics. Firstly, this paper calculates the joint distribution of nuclear energy and electronic energy in the dissociation process of $\text{H}_2^+$ molecules under the action of pump lasers by numerically solving the Schrödinger equation. The results prove that $\text{H}_2^+$ molecules initially in the ground state are dissociated into ${\rm H}^+ + {\rm H}^*$ after absorbing a pump photon in the pump light field. Next, this paper studies the dissociation dynamics of $\text{H}_2^+$ molecules in time-delayed two-color femtosecond lasers. We find that it greatly depends on the specific forms of the pump light and the probe light. By utilizing the dependence of the dissociation kinetic energy release (KER) spectrum on the time delay of the two-color femtosecond lasers, we retrieve the sub-attosecond microscopic dynamic behaviors of electrons and atomic nuclei in the dissociation process. Furthermore, we establish a classical model based on the conservation of energy and momentum to describe the dissociation dynamics. This model can qualitatively predict the ion dissociation KER spectrum depending on the time delay of the two-color femtosecond lasers. The electronic resonant transition between the molecular ground state and the first excited state caused by the probe light will affect the ion kinetic energy spectrum in the dissociation process. Namely, the ion kinetic energy spectrum is dependent on the frequency of the probe laser. By taking advantage of this characteristic, we propose a scheme to reconstruct the evolution of the internuclear distance with time. Our reconstruction results can qualitatively predict the trend of the numerical simulation results, and this scheme may provide some theoretical guidance for experiments.
      Corresponding author: Dong Fu-Long, fldonghb@126.com ; Liu Jie, jliu@gscaep.ac.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1930403) and the National Natural Science Foundation of China (Grant Nos. 12022513, 12404394).
    [1]

    Alnaser A S, Tong X M, Osipov T, et al. 2004 Phys. Rev. A 93 183202Google Scholar

    [2]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009 Phys. Rev. Lett. 102 113002Google Scholar

    [3]

    Mi Y H, Peng P, Camus N, et al. 2020 Phys. Rev. Lett. 125 173201Google Scholar

    [4]

    Pan S Z, Zhang W B, Li H, et al. 2021 Phys. Rev. Lett. 126 063201Google Scholar

    [5]

    Guo Z N, Zhang Z H, Deng Y K, Wang J G, Ye D F, Liu J, Liu Y Q 2024 Phys. Rev. Lett. 132 143201Google Scholar

    [6]

    张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安 2024 物理学报 73 023101Google Scholar

    Zhang Y, Wang X, Xu Z F, Ren J R, Zhang Y N, Zhou X M, Liang C H, Zhang X A 2024 Acta Phys. Sin. 73 023101Google Scholar

    [7]

    骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉 2024 物理学报 73 044101Google Scholar

    Luo Y, Yu X, Lei J T, Tao C Y, Zhang S F, Zhu X L, Ma X W, Yan S C, Zhao X H 2024 Acta Phys. Sin. 73 044101Google Scholar

    [8]

    Jin W W, Wang C C, Zhao X G, et al. 2024 Chin. Phys. Lett. 41 053101Google Scholar

    [9]

    Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 2019 Phys. Rev. Lett. 64 1883Google Scholar

    [10]

    Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar

    [11]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar

    [12]

    Posthumus J H, Plumridge J, Frasinski L J, et al. 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L563Google Scholar

    [13]

    Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M, Corkum P B 2003 Nature 421 826Google Scholar

    [14]

    Staudte A, Pavičić D, Chelkowski S, et al. 2007 Phys. Rev. Lett. 98 073003Google Scholar

    [15]

    Xu H, Li Zhi C, He F, Wang X, Atia T N A, Kielpinski D, Sang R T, Litvinyuk I V 2017 Nat. Commun. 8 15849Google Scholar

    [16]

    Hanus V, Kangaparambil S, Larimian S, et al. 2019 Phys. Rev. Lett. 123 263201Google Scholar

    [17]

    Li X K, Yu X T, Ma P, Zhao X N, Wang C C, Luo S Z, Ding D J 2022 Chin. Phys. B 31 103304Google Scholar

    [18]

    Leth H A, Madsen L B, Mølmer K 2010 Phys. Rev. A 81 053409Google Scholar

    [19]

    Leth H A, Madsen L B, Mølmer K 2010 Phys. Rev. A 81 053410Google Scholar

    [20]

    Liu K L, Barth I 2021 Phys. Rev. A 103 013103Google Scholar

    [21]

    Sami F, Vafaee M, Shokri B 2016 J. Phys. B: At. Mol. Opt. Phys. 44 165601Google Scholar

    [22]

    Zhao M M, Li L H, Si B W, Wang B B, Fu B N, Han Y C 2022 Chin. Phys. Lett. 39 083401Google Scholar

    [23]

    Hu T C, Zhu S K, Zhao Y N, et al. 2022 Chin. Phys. B 31 047901Google Scholar

    [24]

    Pavicic D, Kiess A, Hansch T W, Figger H 2005 Phys. Rev. Lett. 94 163002Google Scholar

    [25]

    Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79 033410Google Scholar

    [26]

    Kling M F, Siedschlag C, Verhoef A J, et al. 2006 Science 312 246Google Scholar

    [27]

    Esry B D, Sayler A M, Wang P Q, Carnes K D, BenItzhak I 2006 Phys. Rev. Lett. 97 013003Google Scholar

    [28]

    Guo W, Lu X Q, Zhao D, Wang X L 2014 Phys. Scr. 89 025401Google Scholar

    [29]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [30]

    Feng L Q 2015 Phys. Rev. A 92 053832Google Scholar

    [31]

    Roudnev V, Esry B D, Itzhak I B 2004 Phys. Rev. Lett. 93 163601Google Scholar

    [32]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022Google Scholar

    [33]

    Alnaser A S, Ulrich B, Tong X M, et al. 2005 Phys. Rev. A 72 030702Google Scholar

    [34]

    Hua J J, Esry B D 2009 Phys. Rev. A 80 013413Google Scholar

    [35]

    Benis E P, Bakarezos M, Papadogiannis N A, et al. 2012 Phys. Rev. A 86 043428Google Scholar

    [36]

    Hu H T, Xu H, Bai Y, Sang R T, Litvinyuk I V, Liu P, Li R X 2016 Phys. Rev. A 94 053415Google Scholar

    [37]

    Fischer B, Kremer M, Pfeifer T, et al. 2010 Phys. Rev. Lett. 105 223001Google Scholar

    [38]

    Jia Z M, Zeng Z N, Li R X, Xu Z Z, Deng Y P 2014 Phys. Rev. A 89 023419Google Scholar

    [39]

    Zhang J, Pan X F, Du H, Xu T T, Guo J, Liu X S 2017 Opt. Commun. 382 495Google Scholar

    [40]

    Liu K L, Zhang Q B, Lu P X 2012 Phys. Rev. A 86 033410Google Scholar

    [41]

    Wanie V 2016 J. Phys. B: At. Mol. Opt. Phys. 49 025601Google Scholar

    [42]

    Balint K G G 2015 Theory of Molecular Collisions (Cambridge: Royal Society of Chemistry

    [43]

    Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar

    [44]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148Google Scholar

    [45]

    Feit M D, Fleck Jr J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

  • 图 1  不同电子本征态对应的核间距依赖的分子势能面

    Figure 1.  Molecular potential energy surfaces as a function of the internuclear distance for different electronic eigenstates.

    图 2  单色泵浦光作用下解离动力学稳定时的核动能与电子能量的联合分布

    Figure 2.  Joint distribution of the nuclear and electron energy after the dissociation caused by the monochromatic pump laser.

    图 3  序列双色激光中$\text{H}_2^+$的延迟时间依赖的离子解离动能谱 (a)经(10)式计算所得的$\text{H}_2^+$的离子解离动能谱, 其中探测光$\tau_{2}=2 T_{2}$, $\lambda_{2}=580$ nm; (b)—(d) 与(a)相同, 区别仅在于探测光脉冲时间为$\tau_{2}=4 T_{2},\;6 T_{2} 和8 T_{2}$. 图中实线是经典模型的计算结果

    Figure 3.  Time-dependent dissociation kinetic energy spectra of $\text{H}_2^+$ in sequential two-color femtosecond lasers: (a) The dissociation kinetic energy spectra of $\text{H}_2^+$ calculated by Eq. (10), in which $\tau_{2}=2 T_{2}$ and $\lambda_{2}=580$ nm; (b)−(d) the same as panel (a), but $\tau_{2}=4 T_{2},\;6 T_{2}和8 T_{2}$, respectively. The solid lines are the results calculated by the classical model.

    图 4  (10)式计算得到的不同探测光波长下$\text{H}_2^+$的延迟时间依赖的离子解离动能谱 (a)探测光脉冲时间为$\tau_{2}=6 T_{2}$, 波长为$\lambda_{2}=180$ nm; (b)—(d)与(a)相同, 区别仅在于探测光波长为$\lambda_{2}=288,\;410,\;580\;{\mathrm{nm}}$

    Figure 4.  Dissociation KER spectra calculated by Eq. (10) as a function of $t_{\rm{d}}$: (a) $\tau_{2}=6 T_{2}$ and $\lambda_{2}=180$ nm; (b)−(d) the same as (a), but $\lambda_{2}=288,\;410,\;580\;{\mathrm{nm}}$, respectively.

    图 5  利用动能谱重构的核间距的时间演化与数值结果对比

    Figure 5.  Comparison between the reconstructed time evolution of the internuclear distance and the numerical simulation results.

    表 1  利用波长依赖的动能谱重构出的$\text{H}_2^+$解离过程中核间距的时间演化

    Table 1.  Reconstructed time evolution of the internuclear distance in the dissociation process of $\text{H}_2^+$ utilizing the wavelength-dependence KER spectra.

    $\lambda_{2}/{\rm{nm}}$ $\omega_{2}/{\rm{a.u.}}$ $R/{\rm{a.u.}}$ $t_{\rm{d}}/{\rm{a.u.}}$ $t=t_{\rm{d}}+T_{2}$ $ \langle t \rangle $ $\Delta t$ $ \langle R \rangle $ $\Delta R$
    $180$ [0.21093, 0.2953] $[2.5, 3.05]$ $[0, 20]$ $[25, 45]$ $35$ $10$ $2.75$ $0.25$
    $288$ [0.13183, 0.18456] $[3.3, 3.85]$ $[0, 47]$ $[40, 87]$ $63.5$ $23.5$ $3.6$ $0.3$
    $410$ [0.0926, 0.12964] $[3.9, 4.45]$ $[0, 60]$ $[57, 117]$ $87$ $30$ $4.2$ $0.3$
    $580$ [0.06546, 0.09164] $[4.45, 5.0]$ $[20, 70]$ $[100, 150]$ $125$ $25$ $4.7$ $0.3$
    DownLoad: CSV
  • [1]

    Alnaser A S, Tong X M, Osipov T, et al. 2004 Phys. Rev. A 93 183202Google Scholar

    [2]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009 Phys. Rev. Lett. 102 113002Google Scholar

    [3]

    Mi Y H, Peng P, Camus N, et al. 2020 Phys. Rev. Lett. 125 173201Google Scholar

    [4]

    Pan S Z, Zhang W B, Li H, et al. 2021 Phys. Rev. Lett. 126 063201Google Scholar

    [5]

    Guo Z N, Zhang Z H, Deng Y K, Wang J G, Ye D F, Liu J, Liu Y Q 2024 Phys. Rev. Lett. 132 143201Google Scholar

    [6]

    张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安 2024 物理学报 73 023101Google Scholar

    Zhang Y, Wang X, Xu Z F, Ren J R, Zhang Y N, Zhou X M, Liang C H, Zhang X A 2024 Acta Phys. Sin. 73 023101Google Scholar

    [7]

    骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉 2024 物理学报 73 044101Google Scholar

    Luo Y, Yu X, Lei J T, Tao C Y, Zhang S F, Zhu X L, Ma X W, Yan S C, Zhao X H 2024 Acta Phys. Sin. 73 044101Google Scholar

    [8]

    Jin W W, Wang C C, Zhao X G, et al. 2024 Chin. Phys. Lett. 41 053101Google Scholar

    [9]

    Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 2019 Phys. Rev. Lett. 64 1883Google Scholar

    [10]

    Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar

    [11]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar

    [12]

    Posthumus J H, Plumridge J, Frasinski L J, et al. 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L563Google Scholar

    [13]

    Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M, Corkum P B 2003 Nature 421 826Google Scholar

    [14]

    Staudte A, Pavičić D, Chelkowski S, et al. 2007 Phys. Rev. Lett. 98 073003Google Scholar

    [15]

    Xu H, Li Zhi C, He F, Wang X, Atia T N A, Kielpinski D, Sang R T, Litvinyuk I V 2017 Nat. Commun. 8 15849Google Scholar

    [16]

    Hanus V, Kangaparambil S, Larimian S, et al. 2019 Phys. Rev. Lett. 123 263201Google Scholar

    [17]

    Li X K, Yu X T, Ma P, Zhao X N, Wang C C, Luo S Z, Ding D J 2022 Chin. Phys. B 31 103304Google Scholar

    [18]

    Leth H A, Madsen L B, Mølmer K 2010 Phys. Rev. A 81 053409Google Scholar

    [19]

    Leth H A, Madsen L B, Mølmer K 2010 Phys. Rev. A 81 053410Google Scholar

    [20]

    Liu K L, Barth I 2021 Phys. Rev. A 103 013103Google Scholar

    [21]

    Sami F, Vafaee M, Shokri B 2016 J. Phys. B: At. Mol. Opt. Phys. 44 165601Google Scholar

    [22]

    Zhao M M, Li L H, Si B W, Wang B B, Fu B N, Han Y C 2022 Chin. Phys. Lett. 39 083401Google Scholar

    [23]

    Hu T C, Zhu S K, Zhao Y N, et al. 2022 Chin. Phys. B 31 047901Google Scholar

    [24]

    Pavicic D, Kiess A, Hansch T W, Figger H 2005 Phys. Rev. Lett. 94 163002Google Scholar

    [25]

    Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79 033410Google Scholar

    [26]

    Kling M F, Siedschlag C, Verhoef A J, et al. 2006 Science 312 246Google Scholar

    [27]

    Esry B D, Sayler A M, Wang P Q, Carnes K D, BenItzhak I 2006 Phys. Rev. Lett. 97 013003Google Scholar

    [28]

    Guo W, Lu X Q, Zhao D, Wang X L 2014 Phys. Scr. 89 025401Google Scholar

    [29]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [30]

    Feng L Q 2015 Phys. Rev. A 92 053832Google Scholar

    [31]

    Roudnev V, Esry B D, Itzhak I B 2004 Phys. Rev. Lett. 93 163601Google Scholar

    [32]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022Google Scholar

    [33]

    Alnaser A S, Ulrich B, Tong X M, et al. 2005 Phys. Rev. A 72 030702Google Scholar

    [34]

    Hua J J, Esry B D 2009 Phys. Rev. A 80 013413Google Scholar

    [35]

    Benis E P, Bakarezos M, Papadogiannis N A, et al. 2012 Phys. Rev. A 86 043428Google Scholar

    [36]

    Hu H T, Xu H, Bai Y, Sang R T, Litvinyuk I V, Liu P, Li R X 2016 Phys. Rev. A 94 053415Google Scholar

    [37]

    Fischer B, Kremer M, Pfeifer T, et al. 2010 Phys. Rev. Lett. 105 223001Google Scholar

    [38]

    Jia Z M, Zeng Z N, Li R X, Xu Z Z, Deng Y P 2014 Phys. Rev. A 89 023419Google Scholar

    [39]

    Zhang J, Pan X F, Du H, Xu T T, Guo J, Liu X S 2017 Opt. Commun. 382 495Google Scholar

    [40]

    Liu K L, Zhang Q B, Lu P X 2012 Phys. Rev. A 86 033410Google Scholar

    [41]

    Wanie V 2016 J. Phys. B: At. Mol. Opt. Phys. 49 025601Google Scholar

    [42]

    Balint K G G 2015 Theory of Molecular Collisions (Cambridge: Royal Society of Chemistry

    [43]

    Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar

    [44]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148Google Scholar

    [45]

    Feit M D, Fleck Jr J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

  • [1] Zhong Zhen-Xiang. Review of the hyperfine structure theory of hydrogen molecular ions. Acta Physica Sinica, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [2] Zheng Yue, Zhang Yu-Xuan, Sun Shao-Hua, Ding Peng-Ji, Hu Bi-Tao, Liu Zuo-Ye. Modulation of non-adiabatic alignment of N2 molecule by femtosecond laser pulses. Acta Physica Sinica, 2023, 72(6): 064203. doi: 10.7498/aps.72.20222112
    [3] Yu Zu-Qing, Yang Wei-Ji, He Feng. Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective. Acta Physica Sinica, 2016, 65(20): 204202. doi: 10.7498/aps.65.204202
    [4] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [5] Yang Qing, Du Guang-Qing, Chen Feng, Wu Yan-Min, Ou Yan, Lu Yu, Hou Xun. Investigation on the electron dynamics of periodic nano ripple formation on fused silica induced by temporally shaped femtosecond laser. Acta Physica Sinica, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [6] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [7] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [8] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock pressure in femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [9] Liu Xiao-Liang, Sun Shao-Hua, Cao Yu, Sun Ming-Ze, Liu Qing-Cao, Hu Bi-Tao. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma. Acta Physica Sinica, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [10] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [11] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [12] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] Guo Kai-Min, Gao Xun, Xue Nian-Liang, Zhao Zhen-Ming, Li Hai-Jun, Lu Yi, Lin Jing-Quan. Spatially-resolved measurement of conductivity of plasma single filament generated by femtosecond laser. Acta Physica Sinica, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [14] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [15] Zhao Hong-Min, Wang Lu-Xia. Laser pulse control of bridge state electron transfer in heterogeneous structures. Acta Physica Sinica, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [16] Wang Xiao-Lei, Zhang Nan, Zhao You-Bo, Li Zhi-Lei, Zhai Hong-Chen, Zhu Xiao-Nong. Determination of air ionization threshold with femtosecond laser pulses. Acta Physica Sinica, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [17] Generation of single plasma channel in air. Acta Physica Sinica, 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [18] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [19] Zhu Pin-Pin, Liu Jian-Sheng, Xu Zhi-Zhan. Calculation of high-energy ions exploded from argon clusters in high intensity femtosecond laser pulses. Acta Physica Sinica, 2004, 53(3): 803-807. doi: 10.7498/aps.53.803
    [20] He Feng, Yu Wei, Lu Pei-Xiang. Field structure and electron density profile in circularly polarized femtosecond laser interaction with a linear plasma. Acta Physica Sinica, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
Metrics
  • Abstract views:  619
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2024
  • Accepted Date:  18 October 2024
  • Available Online:  12 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回