Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision spectroscopic study on rovibrational transitions of cold molecular hydrogen ions

Zhang Qian-Yu Bai Wen-Li Ao Zhi-Yuan Ding Yan-hao Peng Wen-Cui He Sheng-Guo Tong Xin

Citation:

Precision spectroscopic study on rovibrational transitions of cold molecular hydrogen ions

Zhang Qian-Yu, Bai Wen-Li, Ao Zhi-Yuan, Ding Yan-hao, Peng Wen-Cui, He Sheng-Guo, Tong Xin
PDF
Get Citation
  • A molecular hydrogen ion HD+, composed of a proton, a deuteron, and an electron, has a rich set of rovibrational transitions that can be theoretically calculated and experimentally measured precisely. Currently, the relative accuracy of the rovibrational transition frequencies of the HD+ molecular ions has reached the order of 10-12. By comparing experimental measurements and theoretical calculations of the HD+ rovibrational spectrum, the precise determination of the proton-electron mass ratio, the testing of QED (quantum electrodynamics) theory, and the exploration of new physics beyond the standard model can be achieved. The HD+ rovibrational spectrum experiment has achieved the highest accuracy in measuring proton-electron mass ratio, with an accuracy of 20 ppt. This article comprehensively introduces the current state of research on HD+ rovibrational spectroscopy, detailing the experimental method of the high-precision rovibrational spectroscopic measurement based on the sympathetic cooling of HD+ ions by laser-cooled Be+ ions. In section 2, the generation and trapping technique of both Be+ and HD+ ions are introduced. Three ion generation methods including electron impact, laser ablation and photoionization are also compared in this section. In section 3, we show the successful control of the kinetic energy of HD+ molecular ions through the sympathetic cooling, and the importance of laser frequency stabilization for sympathetic cooling of HD+ molecular ions. In section 4, two methods for preparing internal states of HD+ molecular ions, optical pumping and resonance enhanced threshold photoionization, are introduced. Both methods show the significant increase of population on the ground rovibrational state. In section 5, we introduce two methods for determining the number changes of HD+ molecular ions: secular excitation and molecular dynamic simulation. Both methods combined with resonance enhanced multiphoton dissociation can detect the rovibrational transitions of HD+ molecular ions. In section 6, the experimental setup and process for the rovibrational spectrum of HD+ molecular ions are given and the up-to-date results are shown. Finally, the paper is concluded with the summary of the techniques used in HD+ rovibrational spectroscopic measurements, the prospects of potential spectroscopic technologies for further improving frequency measurement precision, and the development of spectroscopic methods of different isotopic hydrogen molecular ions.
  • [1]

    Karr J P, Hilico L, Koelemeij J C, Korobov V 2016 Phys. Rev. A 94 050501

    [2]

    Colbourn E A, Bunker P R 1976 J. Mol. Spectrosc 63 155

    [3]

    Korobov V I, Karr J P 2021 Phys. Rev. A 104 032806

    [4]

    Korobov V I 2022 Phys. Part. Nuclei 53 1

    [5]

    Yan Z C, Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1055

    [6]

    Ye N, Yan Z C 2014 Phys. Rev. A 90 032516

    [7]

    Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99 012501

    [8]

    Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97 243001

    [9]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106 042815

    [10]

    Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86 064502

    [11]

    Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98 032502

    [12]

    Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102 022804

    [13]

    Wing W H, Ruff G A, Lamb Jr W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488

    [14]

    Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98 173002

    [15]

    Bressel U, Borodin A, Shen J, Hansen M G, Ernsting I, Schiller S 2012 Phys. Rev. Lett. 108 18 183003

    [16]

    Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14 555

    [17]

    Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581 152

    [18]

    Kortunov I V, Alighanbari S, Hansen M G, Giri G, Korobov V I, Schiller S 2021 Nat. Phys. 17 569

    [19]

    Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 19 1263

    [20]

    Biesheuvel J, Karr J P, Hilico L, Eikema K, Ubachs W, Koelemeij J 2016 Nat. Commun. 7 10385

    [21]

    Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 369 1238

    [22]

    Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H, Blaum K 2014 Nature 506 467

    [23]

    Heiße F, Rau S, Köhler-Langes F, Quint W, Werth G, Sturm S, Blaum K 2019 Phys. Rev. A 100 022518

    [24]

    Hori M, Aghai-Khozani H, Sótér A, Barna D, Dax A, Hayano R, Kobayashi T, Murakami Y, Todoroki K, Yamada H, Horváth D, Venturelli L 2016 Science 354 610

    [25]

    Borkowski M, Buchachenko A A, Ciuryo R, Julienne P S, Takahashi Y 2019 Sci. Rep. 9 14807

    [26]

    Germann M, Patra S, Karr J P, Hilico L, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028

    [27]

    Shi W, Jacobi J, Knopp H, Schippers S, Müller A 2003 Nucl. Instrum. Methods B 205 201

    [28]

    Udrescu S M, Torres D A, Garcia Ruiz R F 2024 Phys. Rev. Res. 6 013128

    [29]

    Leibrandt D R, Clark R J, Labaziewicz J, Antohi P, Bakr W, Brown K R, Chuang I L 2007 Phys. Rev. A 76 055403

    [30]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201

    [31]

    Benda J, Mašín Z 2021 Sci. Rep. 11 11686

    [32]

    Hashimoto Y, Matsuoka L, Osaki H, Fukushima Y, Hasegawa S 2006 Jpn. J. Appl. Phys. 45 7108

    [33]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002

    [34]

    Wahnschaffe M 2016 Ph.D. Dissertation (Hannover: Gottfried Wilhelm Leibniz University)

    [35]

    Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G, Tong X 2023 Chinese J. Phys. 84 164

    [36]

    Roth B, Blythe P, Wenz H, Daerr H, Schiller S 2006 Phys. Rev. A 73 042712

    [37]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281

    [38]

    Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95 183002

    [39]

    Carollo R A, Lane D A, Kleiner E K, Kyaw P A, Teng C C, Ou C Y, Qiao S, Hanneke D 2017 Opt. Express 25 7220

    [40]

    Wellers C, Schenkel M R, Giri G S, Brown K R, Schiller S 2022 Mol. Phys. 120 e2001599

    [41]

    Okada K, Wada M, Nakamura T, Iida R, Ohtani S, Tanaka J-i, Kawakami H, Katayama I 1998 J. Phys. Soc. Jpn. 67 3073

    [42]

    Wu Q, Filzinger M, Shi Y, Wang Z, Zhang J 2021 Rev. Sci. Instrum. 92 063201

    [43]

    Li Z, Li L, Hua X, Tong X 2024 J. Appl. Phys. 135 144402

    [44]

    Li L, Li Z, Hua X, Tong X 2024 J. Phys. D: Appl. Phys. 57 315205

    [45]

    Buica G, Nakajima T 2008 J. Quant. Spectrosc. Radiat. Transfer 109 107

    [46]

    Tang X, Bachau H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 75

    [47]

    Wolf S, Studer D, Wendt K, Schmidt-Kaler F 2018 Appl. Phys. B 124 30

    [48]

    Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107 043101

    [49]

    Chandler D W, Thorne L R 1986 J. Chem. Phys. 85 1733

    [50]

    Buck J D, Robie D C, Hickman A P, Bamford D J, Bischel W K 1989 Phys. Rev. A 39 3932

    [51]

    Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R, Lous R S 2022 New J. Phys. 24 035004

    [52]

    Wayne M I, Bergquist J C, Bollinger J J, Wineland D J 1995 Phys. Scr. 1995 106

    [53]

    Larson D J, Bergquist J C, Bollinger J J, Itano W M, Wineland D J 1986 Phys. Rev. Lett. 57 70

    [54]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, Collaboration B 2021 Nature 596 514

    [55]

    Karl R, Yin Y, Willitsch S 2024 Mol. Phys. 122 2199099

    [56]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2023 Chin. Phys. B 32 036402

    [57]

    Cozijn F M J, Biesheuvel J, Flores A S, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij J C J 2013 Opt. Lett. 38 13 2370

    [58]

    King S A, Leopold T, Thekkeppatt P, Schmidt P O 2018 Appl. Phys. B 124 214

    [59]

    Ohmae N, Katori H 2019 Rev. Sci. Instrum. 90 063201

    [60]

    Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S 2011 Appl. Phys. B 103 27

    [61]

    Lo H Y, Alonso J, Kienzler D, Keitch B C, de Clercq L E, Negnevitsky V, Home J P 2014 Appl. Phys. B 114 17

    [62]

    Schnitzler H, Fröhlich U, Boley T K W, Clemen A E M, Mlynek J, Peters A, Schiller S 2002 Appl. Opt. 41 7000

    [63]

    Wilson A C, Ospelkaus C, VanDevender A P, Mlynek J A, Brown K R, Leibfried D, Wineland D J 2011 Appl. Phys. B 105 741

    [64]

    Ahmadi M, Alves B X R, Baker C J, Bertsche W, Butler E, Capra A, Carruth C, Cesar C L, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara M C, Gill D R, Gutierrez A, Hangst J S, Hardy W N, Hayden M E, Isaac C A, Ishida A, Johnson M A, Jones S A, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna J T K, Menary S, Michan J M, Momose T, Munich J J, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen C Ø, Robicheaux F, Sacramento R L, Sameed M, Sarid E, Silveira D M, Stracka S, Stutter G, So C, Tharp T D, Thompson J E, Thompson R I, van der Werf D P, Wurtele J S 2017 Nature 541 506

    [65]

    Kraus B, Dawel F, Hannig S, Kramer J, Nauk C, Schmidt P O 2022 Opt. Express 30 44992

    [66]

    Cook E C, Vira A D, Patterson C, Livernois E, Williams W D 2018 Phys. Rev. Lett. 121 053001

    [67]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [68]

    Bai W L, Peng W C, Zhang Q Y, Wang C, Ao Z Y, Tong X 2024 Chinese J. Phys. 89 1500

    [69]

    Hirota A, Igosawa R, Kimura N, Kuma S, Chartkunchand K C, Mishra P M, Lindley M, Yamaguchi T, Nakano Y, Azuma T 2020 Phys. Rev. A 102 023119

    [70]

    Windberger A, Schwarz M, Versolato O O, Baumann T, Bekker H, Schmöger L, Hansen A K, Gingell A D, Klosowski L, Kristensen S, Schmidt P O, Ullrich J, Drewsen M, López-Urrutia J R C 2013 10th International Workshop on Non-Neutral Plasmas Greifswald, GERMANY, Aug 27-30 p250-256

    [71]

    Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol 4 014004

    [72]

    Kas M, Liévin J, Vaeck N, Loreau J 2020 31st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) Deauville, FRANCE, Jul 23-30

    [73]

    Dörfler A D, Yurtsever E, Villarreal P, González-Lezana T, Gianturco F A, Willitsch S 2020 Phys. Rev. A 101 012706

    [74]

    Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P, Hilico L 2020 Phys. Rev. Appl. 14 024053

    [75]

    Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001

    [76]

    Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783

    [77]

    Schneider T, Roth B, Duncker H, Ernsting I, Schiller S 2010 Nat. Phys. 6 275

    [78]

    Wu H, Mills M, West E, Heaven M C, Hudson E R 2021 Phys. Rev. A 104 063103

    [79]

    Kilaj A, Käser S, Wang J, Straňák P, Schwilk M, Xu L, von Lilienfeld O A, Küpper J, Meuwly M, Willitsch S 2023 Phys. Chem. Chem. Phys 25 13933

    [80]

    Calvin A, Eierman S, Peng Z, Brzeczek M, Satterthwaite L, Patterson D 2023 Nature 621 295

    [81]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 1

    [82]

    Okada K, Ichikawa M, Wada M, Schuessler H A 2015 Phys. Rev. Appl. 4 054009

    [83]

    Germann M, Tong X, Willitsch S 2014 Nat. Phys. 10 820

    [84]

    Tran V Q, Karr J P, Douillet A, Koelemeij J C J, Hilico L 2013 Phys. Rev. A 88 033421

    [85]

    Karr J P 2014 J. Mol. Spectrosc 300 37

    [86]

    Schiller S, Bakalov D, Korobov V I 2014 Phys. Rev. Lett. 113 023004

    [87]

    Koelemeij J C J, Roth B, Schiller S 2007 Phys. Rev. A 76 023413

    [88]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749

    [89]

    Myers E G 2018 Phys. Rev. A 98 010101

    [90]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001

    [91]

    Danev P, Bakalov D, Korobov V I, Schiller S 2021 Phys. Rev. A 103 012805

    [92]

    Schenkel M, Alighanbari S, Schiller S 2024 Nat. Phys. 20 383

    [93]

    Zammit M C, Charlton M, Jonsell S, Colgan J, Savage J S, Fursa D V, Kadyrov A S, Bray I, Forrey R C, Fontes C J, Leiding J A, Kilcrease D P, Hakel P, Timmermans E 2019 Phys. Rev. A 100 042709

  • [1] Yang Wen-Bin, Zhang Hua-Lei, Qi Xin-Hua, Che Qing-Feng, Zhou Jiang-Ning, Bai Bing, Chen Shuang, Mu Jin-He. Coherent anti-Stokes Raman scattering spectral calculation and vibrational-rotational temperature measurement of non-equilibrium plasma flow field. Acta Physica Sinica, doi: 10.7498/aps.73.20240455
    [2] Wen Lin, Fan Qun-Chao, Jian Jun, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Ma Jie, Xie Feng. Calculating macroscopic gas molar heat capacity of SO molecule based on rovibrational energy level. Acta Physica Sinica, doi: 10.7498/aps.71.20212273
    [3] Tang Jia-Dong, Liu Qian-Hao, Cheng Cun-Feng, Hu Shui-Ming. Hyperfine structure of ro-vibrational transition of HD in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.70.20210512
    [4] Wang Qiao-Xia, Wang Yu-Min, Ma Ri, Yan Bing. All-electron calculation of ground state vibration-rotation energy levels of 7Li2(0, ±1) molecular systems. Acta Physica Sinica, doi: 10.7498/aps.68.20190359
    [5] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, doi: 10.7498/aps.68.20181729
    [6] Xu Hui-Ying, Liu Yong, Li Zhong-Yuan, Yang Yu-Jun, Yan Bing. Rovibrational spectrum calculations of four electronic states in carbon monoxide molecule: Comparison of two effect correction methods. Acta Physica Sinica, doi: 10.7498/aps.67.20181469
    [7] Xu Mei, Wang Xiao-Lu, Linghu Rong-Feng, Yang Xiang-Dong. Study on ro-vibrational excitation cross sections of Ne-HF. Acta Physica Sinica, doi: 10.7498/aps.62.063102
    [8] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, doi: 10.7498/aps.62.113102
    [9] Wang Li-Rong, Feng Xin-Lin, Ma Jie, Zhao Yan-Ting, Xiao Lian-Tuan, Jia Suo-Tang. Vib-rotational spectrum of ultracold cesium molecule 0g- long range state. Acta Physica Sinica, doi: 10.7498/aps.62.183301
    [10] Li Chun, Zhang Shao-Bin, Jin Wei, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin transfer in linear magnetic molecular ions. Acta Physica Sinica, doi: 10.7498/aps.61.177502
    [11] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Zhou Xun, Yang Xiang-Dong. Theoretical calculation of the vib-rotational interaction potential and the differential coefficient cross sections for He-HD (HT, DT) system. Acta Physica Sinica, doi: 10.7498/aps.61.213101
    [12] Yang Yan, Ji Zhong-Hua, Yuan Jin-Peng, Wang Li-Rong, Zhao Yan-Ting, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Experimental study of rovibrational spectrum of ultracold polar RbCs molecules. Acta Physica Sinica, doi: 10.7498/aps.61.213301
    [13] Wang Xiao-Lu, Xu Mei, Linghu Rong-Feng, Sun Ke-Bin, Yang Xiang-Dong. Theoretical study on the partial wave cross sections of vibrational and rotational excitation for the collisions of He isotope with H2. Acta Physica Sinica, doi: 10.7498/aps.59.1689
    [14] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, doi: 10.7498/aps.59.6940
    [15] Zhang Yi-Chi, Wu Ji-Zhou, Ma Jie, Zhao Yan-Ting, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Research on improve the SNR of ultracold cesium molecule rovibronic spectrum via best optimization parameter control. Acta Physica Sinica, doi: 10.7498/aps.59.5418
    [16] Fan Qun-Chao, Sun Wei-Guo, Qu Shuang-Shuang. Accurate studies on rovibrational energies of the electronic state B1Σ of HF molecule using an algebraic approach. Acta Physica Sinica, doi: 10.7498/aps.57.4110
    [17] Gong Tian-Lin, Yang Xiao-Hua, Li Hong-Bing, Han Liang-Kai, Chen Yang-Qin. Dependence of the molecular ionic spectral intensity on the pressure of mother molecules. Acta Physica Sinica, doi: 10.7498/aps.53.418
    [18] YANG XIAO-HUA, CHEN YANG-QIN, CAI PEI-PEI, LU JING-JING, WANG RONG-JUN. DIFFERENTIAL VELOCITY-MODULATION LASER SPECTROSCOPY OF MOLECULAR IONS. Acta Physica Sinica, doi: 10.7498/aps.48.834
    [19] WANG XIAO-GANG, ZHU QING-SHI. A LOCAL MODE APPROACH TO MOLECULAR VIBRATION ROTATION SPECTROSCOPY OF LOCAL MODE VIBRATIONAL STATES. Acta Physica Sinica, doi: 10.7498/aps.46.1906
    [20] FANG ZI-WEI, LIN CHENG-LU, ZOU SHI-CHANG. A STUDY OF DAMAGE IN SILICON CREATED BY P2+ IMPLANTATION. Acta Physica Sinica, doi: 10.7498/aps.37.1425
Metrics
  • Abstract views:  73
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Available Online:  23 September 2024

/

返回文章
返回