Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision spectroscopy and nuclear structure information of Li+ ions

Guan Hua Qi Xiao-Qiu Chen Shao-Long Shi Ting-Yun Gao Ke-Lin

Citation:

Precision spectroscopy and nuclear structure information of Li+ ions

Guan Hua, Qi Xiao-Qiu, Chen Shao-Long, Shi Ting-Yun, Gao Ke-Lin
PDF
Get Citation
  • Precision spectroscopy of lithium ions offers a unique research platform for exploring bound state quantum electrodynamics and investigating the structure of atomic nuclei. This article provides an overview of our recent efforts, which focus on the precision theoretical calculations and experimental measurements of the hyperfine splittings of 6,7Li+ ions in the 23S1 and 23PJ states. In our theoretical framework, we apply bound state quantum electrodynamics to calculate the hyperfine splitting of the 23S1 and 23PJ states with remarkable precision, achieving an accuracy on the order of 6. Using Hylleraas basis sets, we first solve the non-relativistic Hamiltonian of the three-body system to derive highprecision energies and wave functions. Subsequently, we consider various orders of relativity and QED corrections using the perturbation method, leading to a final calculated accuracy of the hyperfine splitting on the order of tens of kHz. In our experimental efforts, we have developed a low-energy metastable lithium-ion source that provides a stable and continuous ion beam in the 23S1 state. Using this ion beam, we employed saturated fluorescence spectroscopy to enhance the precision of hyperfine structure splittings of 7Li+ in the 23S1 and 23PJ states to about 100 kHz. Furthermore, by utilizing the optical Ramsey method, we obtained the most precise values of the hyperfine splittings of 6Li+, with the smallest uncertainty of about 10 kHz. By combining theoretical calculations and experimental measurements, our team derived the Zemach radii of the 6,7Li nuclei, revealing a significant deviation between the Zemach radius of 6Li and the values predicted by the nuclear model. These findings illuminate the distinct attributes of the 6Li nucleus, catalyzing further investigations in atomic nucleus and propelling advancements in precision spectroscopy of few-electron atoms and molecules.
  • [1]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001

    [2]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510

    [3]

    Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001

    [4]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791

    [5]

    Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Kühl T, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002

    [6]

    Ewald G, Nörtershäuser W, Dax A, Götte S, Kirchner R, Kluge H J, Kühl T, Sanchez R, Wojtaszek A, Bushaw B A, Drake G W F, Yan Z C, Zimmermann C 2004 Phys. Rev. Lett. 93 113002

    [7]

    Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013Rev. Mod. Phys. 85 1383

    [8]

    Kubota Y, Corsi A, Authelet G, Baba H, Caesar C, Calvet D, Delbart A, Dozono M, Feng J, Flavigny F, Gheller J M, Gibelin J, Giganon A, Gillibert A, Hasegawa K, Isobe T, Kanaya Y, Kawakami S, Kim D, Kikuchi Y, Kiyokawa Y, Kobayashi M, Kobayashi N, Kobayashi T, Kondo Y, Korkulu Z, Koyama S, Lapoux V, Maeda Y, Marqués F, M, Motobayashi T, Miyazaki T, Nakamura T, Nakatsuka N, Nishio Y, Obertelli A, Ogata K, Ohkura A, Orr N A, Ota S, Otsu H, Ozaki T, Panin V, Paschalis S, Pollacco E C, Reichert S, Roussé J Y, Saito A T, Sakaguchi S, Sako M, Santamaria C, Sasano M, Sato H, Shikata M, Shimizu Y, Shindo Y, Stuhl L, Sumikama T, Sun Y L, Tabata M, Togano Y, Tsubota J, Yang Z H, Yasuda J, Yoneda K, Zenihiro J, Uesaka T 2020 Phys. Rev. Lett. 125 252501

    [9]

    Drake G W F, Dhindsa H S, Marton V J, 2021 Phys. Rev. A 104 L060801

    [10]

    Knight R D, Prior M H 1980 Phys. Rev. A 21 179

    [11]

    Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, zu Putlitz G 1983 Hyperfine Interact. 15 159

    [12]

    Drake G W F 1971 Phys. Rev. A 3 908

    [13]

    Schüler H 1924 Naturwissenschaften 12 579

    [14]

    Herzberg G, Moore H R 1959 Can. J Phys. 37 1293

    [15]

    Heisenberg W 1926 Z. Phys. 39 499

    [16]

    Güttinger P, Pauli W 1931 Z. Phys. 67 743

    [17]

    Güttinger P 1930 Z. Physik A 64 749

    [18]

    Macek J 1969 Phys. Rev. Lett. 23 1

    [19]

    Berry H G, Subtil J L 1971 Phys. Rev. Lett. 27 1103

    [20]

    Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488

    [21]

    Fan B, Grischkowsky D, Lurio A 1979 Opt. Lett. 4 233

    [22]

    Fan B, Lurio A, Grischkowsky D 1978 Phys. Rev. Lett. 41 1460

    [23]

    Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K, zu Putlitz G 1981 Z. Phys. A: Hadrons Nucl. 300 25

    [24]

    Englert M, Kowalski J, Mayer F, Neumann R, Noehte S, Schwarzwald P, Suhr H, Winkler K, Putlitz G 1982 Sov. J. Quantum Electron. 12 664

    [25]

    Rong H, GrafströM S, Kowalski J, zu Putlitz G, Jastrzebski W, Neumann R 1993 Opt. Commun. 100 268

    [26]

    Riis E, Berry H G, Poulsen O, Lee S A, Tang S Y 1986 Phys. Rev. A 33 3023

    [27]

    Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C, Levick A P 1994 Phys. Rev. A 49 207

    [28]

    Clarke J J, van Wijngaarden W A 2003 Phys. Rev. A 67 012506

    [29]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728

    [30]

    Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001

    [31]

    Yerokhin V A 2008 Phys. Rev. A 78 012513

    [32]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002

    [33]

    Guan H, S. Chen, Qi X Q, S. Liang, Sun W, P. Zhou, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, K. Gao 2020 Phys. Rev. A 102 030801

    [34]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002

    [35]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002

    [36]

    Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510

    [37]

    Pachucki K, Yerokhin V A, Cancio Pastor P 2012 Phys. Rev. A 85 042517

    [38]

    Patkóš V c v, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510

    [39]

    Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101 022501

    [40]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403

    [41]

    Pachucki K 2006 Phys. Rev. A 74 022512

    [42]

    Yerokhin V A, Pachucki K 2015 J Phys. Chem. Ref. Data 44 031206

    [43]

    Karshenboim S G, Ivanov V G 2002 Eur. Phys. J D 19 13

    [44]

    McKenzie D K, Drake G W F 1991 Phys. Rev. A 44 R6973

    [45]

    Yan Z C, Drake G W F 2000 Phys. Rev. A 61 022504

    [46]

    Zemach A C 1956 Phys. Rev. 104 1771

    [47]

    Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88 032519

    [48]

    Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112

    [49]

    Artoni, M. and Carusotto, I. and Minardi, F. 2000 Phys. Rev. A 62 023402

    [50]

    Brown R C, Wu S J, Porto J V, Sansonetti C J, Simien C E, Brewer S M, Tan J N, Gillaspy J D 2013 Phys. Rev. A 87 032504

    [51]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 it Science 358 79

    [52]

    Ramsey N F 1950 Phys. Rev. 78 695

    [53]

    Zhou P P, Sun W, Liang S Y, Chen S L, Zhou Z Q, Huang Y, Guan H, Gao K L 2021 Appl. Optics 21 6097

    [54]

    Stone N 2016 At. Data Nucl. Data Tables 111 1

    [55]

    Pachucki K, Patkóš V, Yerokhin V A 2023 Phys. Rev. A 108 052802

  • [1] Du Xiao-Jiao, Wei Long, Sun Yu, Hu Shui-Ming. Free electron laser prepared high-intensity metastable helium and helium-like ions. Acta Physica Sinica, doi: 10.7498/aps.73.20240554
    [2] Wang Xue-Mei, Zhang An-Qi, Zhao Sheng-Mei. Implementation of controlled phase gate based on superadiabatic shortcut in circuit quantum electrodynamics. Acta Physica Sinica, doi: 10.7498/aps.71.20220248
    [3] Zhu Xing-Long, Wang Wei-Min, Yu Tong-Pu, He Feng, Chen Min, Weng Su-Ming, Chen Li-Ming, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields. Acta Physica Sinica, doi: 10.7498/aps.70.20202224
    [4] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, doi: 10.7498/aps.70.20201833
    [5] Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing. Review on laser-driven high-energy polarized electron and positron beams and γ-rays. Acta Physica Sinica, doi: 10.7498/aps.70.20210009
    [6] Chen Zhen, Wang Shuai-Peng, Li Tie-Fu, You Jian-Qiang. Counter-rotating effect on frequency shift of flux qubit in ultrastrongly coupled circuit-quantum-electrodynamics system. Acta Physica Sinica, doi: 10.7498/aps.69.20200474
    [7] Zheng Xin, Sun Yu, Chen Jiao-Jiao, Hu Shui-Ming. Precision spectroscopy on the 2 3S-2 3P transition of atomic helium. Acta Physica Sinica, doi: 10.7498/aps.67.20180914
    [8] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, doi: 10.7498/aps.63.060301
    [9] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, doi: 10.7498/aps.63.244205
    [10] Meng Jian-Yu, Wang Pei-Yue, Feng Wei, Yang Guo-Jian, Li Xin-Qi. On the schemes of cavity photon elimination in circuit-quantum electrodynamics systems. Acta Physica Sinica, doi: 10.7498/aps.61.180302
    [11] Sun Yu, Feng Gao-Ping, Cheng Cun-Feng, Tu Le-Yi, Pan Hu, Yang Guo-Min, Hu Shui-Ming. Precision spectroscopy of helium using a laser-cooled atomic beam. Acta Physica Sinica, doi: 10.7498/aps.61.170601
    [12] Chen Xiang, Mi Xian-Wu. Studys of characteristics for pump-induced emission and anharmonic cavity-QED in quantum dot-cavity systems. Acta Physica Sinica, doi: 10.7498/aps.60.044202
    [13] Yu Xiao-Guang, Wang Bing-Bing, Cheng Tai-Wang, Li Xiao-Feng, Fu Pan-Ming. Quantum electrodynamics theory of high-order above-threshold ionization. Acta Physica Sinica, doi: 10.7498/aps.54.3542
    [14] Jiang Wei-Zhou, Fu De-Ji, Wang Zhen-Xia, Ai Xiao-Bai, Zhu Zhi-Yuan. Effects of quantum electromagnetic dynamics in a cylindrical ring cavity. Acta Physica Sinica, doi: 10.7498/aps.52.813
    [15] YUAN XIAO-LI, SHI YI, YANG HONG-GUAN, BU HUI-MING, WU JUN, ZHAO BO, ZHANG RONG, ZHENG YOU-DOU. CHARGING DYNAMICS OF Si-QUANTUM DOTS IN TUNNEL CAPACITOR. Acta Physica Sinica, doi: 10.7498/aps.49.2037
    [16] LIU LIAO. THE FOAM-LIKE STRUCTURE OF SPACE-TIME AND THE CANCELLATION OF THE DIVERGENCE OF QUANTUM ELECTRODYNAMICS. Acta Physica Sinica, doi: 10.7498/aps.47.363
    [17] NI GUANG-JIONG, XU JIAN-JUN. SCALAR QUANTUM ELECTRODYNAMICS WITH CHERN-SIMONS TERM IN (2+1) DIMENSIONS. Acta Physica Sinica, doi: 10.7498/aps.40.1217
    [18] CHEN ZONG-YUN, ZHOU YI-CHANG, HUANG NIAN-NING. ON THE FUNCTIONAL EVALUATION OF EFFECTIVE POTENTIAL IN SCALAR QED. Acta Physica Sinica, doi: 10.7498/aps.31.660
    [19] . Acta Physica Sinica, doi: 10.7498/aps.24.180
    [20] ИСКЛЮЧЕНИЕ ПРОДОЛЬНЫХ ПОЛЯ В КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКЕ. Acta Physica Sinica, doi: 10.7498/aps.11.453
Metrics
  • Abstract views:  116
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Available Online:  07 September 2024

/

返回文章
返回