Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision spectroscopy and nuclear structure information of Li+ ions

Guan Hua Qi Xiao-Qiu Chen Shao-Long Shi Ting-Yun Gao Ke-Lin

Citation:

Precision spectroscopy and nuclear structure information of Li+ ions

Guan Hua, Qi Xiao-Qiu, Chen Shao-Long, Shi Ting-Yun, Gao Ke-Lin
cstr: 32037.14.aps.73.20241128
PDF
HTML
Get Citation
  • Precision spectroscopy of lithium ions offers a unique research platform for exploring bound state quantum electrodynamics and investigating the structure of atomic nuclei. This paper overviews our recent efforts dedicated to the precision theoretical calculations and experimental measurements of the hyperfine splittings of 6,7Li+ ions in the $\,^3{\rm{S}}_1$ and $\,^3{\rm{P}}_J$ states. In our theoretical research, we utilize bound state quantum electrodynamics to calculate the hyperfine splitting of the $\,^3{\rm{S}}_1$ and $\,^3{\rm{P}}_J$ states with remarkable precision, achieving an accuracy on the order of $m\alpha^6$. Using Hylleraas basis sets, we first solve the non-relativistic Hamiltonian of the three-body system to derive high-precision energy and wave functions. Subsequently, we consider various orders of relativity and quantum electrodynamics corrections by using the perturbation method, with accuracy of the calculated hyperfine splitting reaching tens of kHz. In our experimental efforts, we developed a low-energy metastable lithium-ion source that provides a stable and continuous ion beam in the $\,^3{\rm{S}}_1$ state. Using this ion beam, we utilize the saturated fluorescence spectroscopy to enhance the precision of hyperfine structure splittings of 7Li+ in the $\,^3{\rm{S}}_1$ and $\,^3{\rm{P}}_J$ states to about 100 kHz. Furthermore, by utilizing the optical Ramsey method, we obtain the most precise values of the hyperfine splittings of 6Li+, with the smallest uncertainty of about 10 kHz. By combining theoretical calculations and experimental measurements, our team have derived the Zemach radii of the 6,7Li nuclei, revealing a significant discrepancy between the Zemach radius of 6Li and the values predicted by the nuclear model. These findings elucidate the distinctive properties of the 6Li nucleus, promote further investigations of atomic nuclei, and advance the precise spectroscopy of few-electron atoms and molecules.
      Corresponding author: Shi Ting-Yun, tyshi@wipm.ac.cn ; Gao Ke-Lin, klgao@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 92265206, 12393823, 12121004, 12274423, 12204412), the Chinese Academy of Sciences (Grant Nos. YSBR-085, YSBR-055), the Natural Science Foundation of Hubei Province, Province (Grant No. 2022CFA013), and the Science Foundation of Zhejiang Sci-Tech University, China (Grant No. 21062349-Y).
    [1]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [2]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [3]

    Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001Google Scholar

    [4]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791Google Scholar

    [5]

    Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Kühl T, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002Google Scholar

    [6]

    Ewald G, Nörtershäuser W, Dax A, Götte S, Kirchner R, Kluge H J, Kühl T, Sanchez R, Wojtaszek A, Bushaw B A, Drake G W F, Yan Z C, Zimmermann C 2004 Phys. Rev. Lett. 93 113002Google Scholar

    [7]

    Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013 Rev. Mod. Phys. 85 1383Google Scholar

    [8]

    Kubota Y, Corsi A, Authelet G, Baba H, Caesar C, Calvet D, Delbart A, Dozono M, Feng J, Flavigny F, Gheller J M, Gibelin J, Giganon A, Gillibert A, Hasegawa K, Isobe T, Kanaya Y, Kawakami S, Kim D, Kikuchi Y, Kiyokawa Y, Kobayashi M, Kobayashi N, Kobayashi T, Kondo Y, Korkulu Z, Koyama S, Lapoux V, Maeda Y, Marqués F, M, Motobayashi T, Miyazaki T, Nakamura T, Nakatsuka N, Nishio Y, Obertelli A, Ogata K, Ohkura A, Orr N A, Ota S, Otsu H, Ozaki T, Panin V, Paschalis S, Pollacco E C, Reichert S, Roussé J Y, Saito A T, Sakaguchi S, Sako M, Santamaria C, Sasano M, Sato H, Shikata M, Shimizu Y, Shindo Y, Stuhl L, Sumikama T, Sun Y L, Tabata M, Togano Y, Tsubota J, Yang Z H, Yasuda J, Yoneda K, Zenihiro J, Uesaka T 2020 Phys. Rev. Lett. 125 252501Google Scholar

    [9]

    Drake G W F, Dhindsa H S, Marton V J, 2021 Phys. Rev. A 104 L060801Google Scholar

    [10]

    Knight R D, Prior M H 1980 Phys. Rev. A 21 179Google Scholar

    [11]

    Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, zu Putlitz G 1983 Hyperfine Interact. 15 159Google Scholar

    [12]

    Drake G W F 1971 Phys. Rev. A 3 908Google Scholar

    [13]

    Schüler H 1924 Naturwissenschaften 12 579

    [14]

    Herzberg G, Moore H R 1959 Can. J. Phys. 37 1293Google Scholar

    [15]

    Heisenberg W 1926 Z. Phys. 39 499Google Scholar

    [16]

    Güttinger P, Pauli W 1931 Z. Phys. 67 743Google Scholar

    [17]

    Güttinger P 1930 Z. Physik A 64 749Google Scholar

    [18]

    Macek J 1969 Phys. Rev. Lett. 23 1Google Scholar

    [19]

    Berry H G, Subtil J L 1971 Phys. Rev. Lett. 27 1103Google Scholar

    [20]

    Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488Google Scholar

    [21]

    Fan B, Grischkowsky D, Lurio A 1979 Opt. Lett. 4 233Google Scholar

    [22]

    Fan B, Lurio A, Grischkowsky D 1978 Phys. Rev. Lett. 41 1460Google Scholar

    [23]

    Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K, zu Putlitz G 1981 Z. Phys. A: Hadrons Nucl. 300 25

    [24]

    Englert M, Kowalski J, Mayer F, Neumann R, Noehte S, Schwarzwald P, Suhr H, Winkler K, zu Putlitz G 1982 Sov. J. Quantum Electron. 12 664Google Scholar

    [25]

    Rong H, GrafströM S, Kowalski J, zu Putlitz G, Jastrzebski W, Neumann R 1993 Opt. Commun. 100 268Google Scholar

    [26]

    Riis E, Berry H G, Poulsen O, Lee S A, Tang S Y 1986 Phys. Rev. A 33 3023Google Scholar

    [27]

    Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C, Levick A P 1994 Phys. Rev. A 49 207Google Scholar

    [28]

    Clarke J J, van Wijngaarden W A 2003 Phys. Rev. A 67 012506Google Scholar

    [29]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728Google Scholar

    [30]

    Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001Google Scholar

    [31]

    Yerokhin V A 2008 Phys. Rev. A 78 012513Google Scholar

    [32]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002Google Scholar

    [33]

    Guan H, S. Chen, Qi X Q, S. Liang, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801Google Scholar

    [34]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [35]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [36]

    Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510Google Scholar

    [37]

    Pachucki K, Yerokhin V A, Cancio Pastor P 2012 Phys. Rev. A 85 042517Google Scholar

    [38]

    Patkóš V C V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510Google Scholar

    [39]

    Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101 022501Google Scholar

    [40]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [41]

    Pachucki K 2006 Phys. Rev. A 74 022512Google Scholar

    [42]

    Yerokhin V A, Pachucki K 2015 J. Phys. Chem. Ref. Data 44 031206Google Scholar

    [43]

    Karshenboim S G, Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar

    [44]

    McKenzie D K, Drake G W F 1991 Phys. Rev. A 44 R6973Google Scholar

    [45]

    Yan Z C, Drake G W F 2000 Phys. Rev. A 61 022504Google Scholar

    [46]

    Zemach A C 1956 Phys. Rev. 104 1771Google Scholar

    [47]

    Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88 032519Google Scholar

    [48]

    Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112Google Scholar

    [49]

    Artoni M, Carusotto I, Minardi F 2000 Phys. Rev. A 62 023402Google Scholar

    [50]

    Brown R C, Wu S J, Porto J V, Sansonetti C J, Simien C E, Brewer S M, Tan J N, Gillaspy J D 2013 Phys. Rev. A 87 032504Google Scholar

    [51]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [52]

    Ramsey N F 1950 Phys. Rev. 78 695Google Scholar

    [53]

    Zhou P P, Sun W, Liang S Y, Chen S L, Zhou Z Q, Huang Y, Guan H, Gao K L 2021 Appl. Opt. 60 6097Google Scholar

    [54]

    Stone N 2016 At. Data Nucl. Data Tables 111 1

    [55]

    Pachucki K, Patkóš V, Yerokhin V A 2023 Phys. Rev. A 108 052802Google Scholar

  • 图 1  6, 7Li+的$2\, ^3{\rm{S}}_1$和$2\, ^3{\rm{P}}_J$态的超精细劈裂能级示意图, 单位 MHz[34]

    Figure 1.  Hyperfine energy levels of the $2\, ^3{\rm{S}}_1$ and $2\, ^3{\rm{P}}_J$ states of 6, 7Li+, in MHz[34].

    图 2  Li+能级图. 图中仅列出了最低的几个S和P态能级, 并取Li+的基态$1\, ^1{\rm{S}}_0$作为能级参考点

    Figure 2.  Energy level diagram of Li+. Only a few of the lowest S and P states are displayed, with the ground state $1\, ^1{\rm{S}}_0$ of Li+ designated as the reference point for energy levels.

    图 3  Li+离子束源装置图

    Figure 3.  Schematic of Li+ ion beam source.

    图 4  饱和荧光光谱方案示意图[33]

    Figure 4.  Schematic of the saturated fluorescence spectroscopy setup[33]

    图 5  7Li+离子${2\, ^3{\rm{P}}_{2}}$态中F = 1/2和F = 3/2的超精细劈裂测量[33] (a)纯净的Lamb凹陷信号及其Voigt-Fano线形拟合; (b)测量值的统计分布; (c)测量数据的直方图

    Figure 5.  Measurement of the hyperfine splitting of the ${2\, ^3{\rm{P}}_{2}}$ state for 7Li+ between F = 1/2 and F = 3/2[33]: (a) The pure Lamb dip signal and its Voigt-Fano line shape fitting; (b) statistical distribution of the measured values; (c) histogram of the measurement data.

    图 6  Li+离子Ramsey光谱实验装置图[35]

    Figure 6.  Schematic of the experimental setup for the Ramsey spectroscopy of Li+ ion[35]

    图 7  6Li+离子超精细结构劈裂$^3{\rm{P}}_1^{0-1}$的测量[35] (a)某条跃迁的单次Ramsey光谱, 红实线表示由高斯函数与正弦函数乘积构成的线型对实验数据的拟合; (b)6Li+离子超精细结构劈裂$^3{\rm{P}}_1^{0-1}$的实验结果

    Figure 7.  Measurement of the $^3{\rm{P}}_1^{0-1}$ interval in 6Li+[35]: (a) Ramsey spectrum from a single scan of one of the measured transitions. The solid red line is an experimental data fit to a Gaussian-damped sinusoidal function. Residuals of the fit are shown in the lower panel. (b) Experimental results for the $^3{\rm{P}}_1^{0-1}$ interval of 6Li+.

    图 8  6Li+离子超精细结构劈裂$ {^3{\rm{P}}_1^{1-2}} $测量结果对激光相对于探测器极化角度的依赖. (a)和(b)分别是通过高斯和Fano-Voigt函数拟合获得的数据

    Figure 8.  Dependence of the measured hyperfine interval $ {^3{\rm{P}}_1^{1-2}} $ of 6Li+ on laser polarization angle relative to the direction of the photodetector. (a) and (b) are obtained by fitting the envelope with a Gaussian and Fano-Voigt function, respectively.

    图 9  6, 7Li核的Zemach半径比较, 单位 fm

    Figure 9.  Comparison of the Zemach radii of 6, 7Li, in fm.

    表 1  Li+ 离子$ 2\, ^3{\rm{P}}_2 $态中F = 3/2和F = 5/2之间超精细劈裂误差表, 单位为 kHz[33]

    Table 1.  Uncertainty budget for the hyperfine splitting between F = 3/2 and F = 5/2 in $ 2\, ^3{\rm{P}}_2 $ of Li+, in kHz[33]

    误差来源 $ \delta\nu $
    统计误差 44
    1阶Doppler效应 < 1
    2阶Doppler效应 < 1
    激光功率 11
    激光频率测量 5
    Zeeman效应 1
    量子干涉效应 27
    总误差 53
    DownLoad: CSV

    表 2  6Li+离子$2\, ^3{\rm{S}}_1$和 $2\, ^3{\rm{P}}_{1, 2}$态超精细劈裂测量值及误差, 单位kHz[35]

    Table 2.  The measured values and errors of the hyperfine splittings in the $2\, ^3{\rm{S}}_1$ and $2\, ^3{\rm{P}}_{1, 2}$ states of 6Li+ ions, in units of kHz[35].

    误差来源$2\, { ^{3}{\rm{S}}_{1}^{0-1}}$${2\, ^{3}{\rm{S}}_{1}^{1-2}}$${2\, ^{3}{\rm{P}}_{1}^{0-1}}$${2\, ^{3}{\rm{P}}_{1}^{1-2}}$${2\, ^{3}{\rm{P}}_{2}^{1-2}}$${2\, ^{3}{\rm{P}}_{2}^{2-3}}$
    统计误差3001783(6)6003618(4)1317652(6)288423(4)2858019(6)4127891(4)
    一阶Doppler效应(3.5)(3.5)(3.5)(3.5)(3.5)(3.5)
    二阶Doppler效应0.27(1)0.54(3)0.12(1)0.26(1)0.26(1)0.37(2)
    激光功率(5.0)(5.0)(5.0)(5.0)(5.0)(5.0)
    Zeeman效应(6.3)(0.3)(1.6)(3.2)(3.2)(1.6)
    量子干涉效应(8)(8)(8)(8)(8)(8)
    总误差3001783(13)6003619(11)1317652(12)288423(11)2858019(12)4127891(11)
    DownLoad: CSV

    表 3  6Li+离子$2\, ^3{\rm{S}}_1$和$2\, ^3{\rm{P}}_J$态的超精细劈裂, 单位 MHz[34,35]. 理论计算中使用的核电四极矩为–0.0806(6) fm2[54], Zemach半径为2.44(2) fm

    Table 3.  Hyperfine splittings in the $2\, ^3{\rm{S}}_1$ and $2\, ^3{\rm{P}}_J$ states of 6Li+, in MHz[34,35]. The nuclear electric quadrupole moment used in theory is –0.0806(6) fm2[54] and the Zemach radius used is 2.44(2) fm

    实验 理论
    Kowalski et al.[11] Clarke et al.[28] Sun et al.[35] Drake et al.[27] Qi et al.[34] Sun et al.[35]
    $2\, ^3{\rm{S}}_1^{0-1}$ 3001.780(50) 3001.83(47) 3001.782(18) 3001.765(38)
    $2\, ^3{\rm{S}}_1^{1-2}$ 6003.600(50) 6003.66(51) 6003.620(8) 6003.614(24)
    $2\, ^3{\rm{P}}_1^{0-1}$ 1316.06(59) 1317.647(40) 1317.649(46) 1317.732(31) 1317.736(15)
    $2\, ^3{\rm{P}}_1^{1-2}$ 2888.98(63) 2888.429(21) 2888.327(29) 2888.379(20) 2888.391(10)
    $2\, ^3{\rm{P}}_2^{1-2}$ 2857.00(72) 2858.028(27) 2858.002(60) 2857.962(43) 2857.972(21)
    $2\, ^3{\rm{P}}_2^{2-3}$ 4127.16(76) 4127.886(13) 4127.882(43) 4127.924(31) 4127.937(15)
    DownLoad: CSV

    表 4  7Li+离子2 3S1和$ 2\, ^3{\rm{P}}_J $态的超精细劈裂, 单位 MHz[33,34]. 理论计算中使用的核电四极矩为–4.00(3) fm2 [54], Zemach半径为3.38(3) fm

    Table 4.  Hyperfine splittings in the 2 3S1 and $ 2\, ^3{\rm{P}}_J $ states of 7Li+, in MHz[33,34]. The nuclear electric quadrupole moment used is –4.00(3) fm2 [54] and the Zemach radius used is 3.38(3) fm

    实验 理论
    Kötz et al.[11,23] Clarke et al.[28] Guan et al.[33] Drake et al.[27] Qi et al.[34]
    $ 2\, ^3{\rm{S}}_1^{1/2-3/2} $ 11890.018(40) 11891.22(60) 11890.088(65) 11890.013(38)
    $ 2\, ^3{\rm{S}}_1^{3/2-5/2} $ 19817.673(40) 19817.90(93) 19817.696(42) 19817.680(25)
    $ 2\, ^3{\rm{P}}_1^{1/2-3/2} $ 4237.8(10) 4239.11(54) 4238.823(111) 4238.86(20) 4238.920(49)
    $ 2\, ^3{\rm{P}}_1^{3/2-5/2} $ 9965.2(6) 9966.30(69) 9966.655(102) 9966.14(13) 9966.444(34)
    $ 2\, ^3{\rm{P}}_2^{1/2-3/2} $ 6203.6(5) 6204.52(80) 6203.319(67) 6203.27(30) 6203.408(95)
    $ 2\, ^3{\rm{P}}_2^{3/2-5/2} $ 9608.7(20) 9608.90(49) 9608.220(54) 9608.12(15) 9608.311(54)
    $ 2\, ^3{\rm{P}}_2^{5/2-7/2} $ 11775.8(5) 11774.04(94) 11772.965(74) 11773.05(18) 11773.003(55)
    DownLoad: CSV

    表 5  通过2 3S1态的超精细劈裂确定的Zemach半径, 单位 fm

    Table 5.  Determination of the Zemach radii by the hyperfine splittings of the 2 3S1 state, in fm

    6Li+ 7Li+
    $A_{\rm{the}}/{\mathrm{kHz}} $[55] 2997908.1(1.4) 7917508.1(1.3)
    $A_{\rm{exp}}/{\mathrm{kHz}} $(Guan et al.)[33] 3001805.1(7) 7926990.1(2.3)
    $a_\mathrm{e} + \delta_{\rm QED} $[55] 0.0015709(5) 0.0015749(5)
    $\delta_{\rm{HO}}=A_{\rm{exp}}/A_{\rm the}-1$ 0.0012999(24) 0.0011976(29)
    $\delta_{\rm{ZM}}$ –0.0002710(24) –0.0003773(30)
    $R_{\rm{em}} $ (Pachucki et al.)[55] 2.39(2) 3.33(3)
    $R_{\rm{em}} $ (Sun et al.)[35] 2.44(2)
    $R_{\rm{em}} $ (Qi et al.)[34] 2.47(8) 3.38(3)
    $R_{\rm{em}} $ (Qi et al.)[34] 2.40(16) 3.33(7)
    $R_{\rm{em}} $ (Puchalski et al.)[30] 2.29(4) 3.23(4)
    $R_{\rm{em}} $ (核模型值)[31] 3.71(16) 3.42(6)
    $R_{\rm{em}} $ (Li et al.)[30,32] 2.44(6)
    DownLoad: CSV
  • [1]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [2]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [3]

    Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001Google Scholar

    [4]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791Google Scholar

    [5]

    Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Kühl T, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002Google Scholar

    [6]

    Ewald G, Nörtershäuser W, Dax A, Götte S, Kirchner R, Kluge H J, Kühl T, Sanchez R, Wojtaszek A, Bushaw B A, Drake G W F, Yan Z C, Zimmermann C 2004 Phys. Rev. Lett. 93 113002Google Scholar

    [7]

    Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013 Rev. Mod. Phys. 85 1383Google Scholar

    [8]

    Kubota Y, Corsi A, Authelet G, Baba H, Caesar C, Calvet D, Delbart A, Dozono M, Feng J, Flavigny F, Gheller J M, Gibelin J, Giganon A, Gillibert A, Hasegawa K, Isobe T, Kanaya Y, Kawakami S, Kim D, Kikuchi Y, Kiyokawa Y, Kobayashi M, Kobayashi N, Kobayashi T, Kondo Y, Korkulu Z, Koyama S, Lapoux V, Maeda Y, Marqués F, M, Motobayashi T, Miyazaki T, Nakamura T, Nakatsuka N, Nishio Y, Obertelli A, Ogata K, Ohkura A, Orr N A, Ota S, Otsu H, Ozaki T, Panin V, Paschalis S, Pollacco E C, Reichert S, Roussé J Y, Saito A T, Sakaguchi S, Sako M, Santamaria C, Sasano M, Sato H, Shikata M, Shimizu Y, Shindo Y, Stuhl L, Sumikama T, Sun Y L, Tabata M, Togano Y, Tsubota J, Yang Z H, Yasuda J, Yoneda K, Zenihiro J, Uesaka T 2020 Phys. Rev. Lett. 125 252501Google Scholar

    [9]

    Drake G W F, Dhindsa H S, Marton V J, 2021 Phys. Rev. A 104 L060801Google Scholar

    [10]

    Knight R D, Prior M H 1980 Phys. Rev. A 21 179Google Scholar

    [11]

    Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, zu Putlitz G 1983 Hyperfine Interact. 15 159Google Scholar

    [12]

    Drake G W F 1971 Phys. Rev. A 3 908Google Scholar

    [13]

    Schüler H 1924 Naturwissenschaften 12 579

    [14]

    Herzberg G, Moore H R 1959 Can. J. Phys. 37 1293Google Scholar

    [15]

    Heisenberg W 1926 Z. Phys. 39 499Google Scholar

    [16]

    Güttinger P, Pauli W 1931 Z. Phys. 67 743Google Scholar

    [17]

    Güttinger P 1930 Z. Physik A 64 749Google Scholar

    [18]

    Macek J 1969 Phys. Rev. Lett. 23 1Google Scholar

    [19]

    Berry H G, Subtil J L 1971 Phys. Rev. Lett. 27 1103Google Scholar

    [20]

    Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488Google Scholar

    [21]

    Fan B, Grischkowsky D, Lurio A 1979 Opt. Lett. 4 233Google Scholar

    [22]

    Fan B, Lurio A, Grischkowsky D 1978 Phys. Rev. Lett. 41 1460Google Scholar

    [23]

    Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K, zu Putlitz G 1981 Z. Phys. A: Hadrons Nucl. 300 25

    [24]

    Englert M, Kowalski J, Mayer F, Neumann R, Noehte S, Schwarzwald P, Suhr H, Winkler K, zu Putlitz G 1982 Sov. J. Quantum Electron. 12 664Google Scholar

    [25]

    Rong H, GrafströM S, Kowalski J, zu Putlitz G, Jastrzebski W, Neumann R 1993 Opt. Commun. 100 268Google Scholar

    [26]

    Riis E, Berry H G, Poulsen O, Lee S A, Tang S Y 1986 Phys. Rev. A 33 3023Google Scholar

    [27]

    Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C, Levick A P 1994 Phys. Rev. A 49 207Google Scholar

    [28]

    Clarke J J, van Wijngaarden W A 2003 Phys. Rev. A 67 012506Google Scholar

    [29]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728Google Scholar

    [30]

    Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001Google Scholar

    [31]

    Yerokhin V A 2008 Phys. Rev. A 78 012513Google Scholar

    [32]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002Google Scholar

    [33]

    Guan H, S. Chen, Qi X Q, S. Liang, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801Google Scholar

    [34]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [35]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [36]

    Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510Google Scholar

    [37]

    Pachucki K, Yerokhin V A, Cancio Pastor P 2012 Phys. Rev. A 85 042517Google Scholar

    [38]

    Patkóš V C V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510Google Scholar

    [39]

    Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101 022501Google Scholar

    [40]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [41]

    Pachucki K 2006 Phys. Rev. A 74 022512Google Scholar

    [42]

    Yerokhin V A, Pachucki K 2015 J. Phys. Chem. Ref. Data 44 031206Google Scholar

    [43]

    Karshenboim S G, Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar

    [44]

    McKenzie D K, Drake G W F 1991 Phys. Rev. A 44 R6973Google Scholar

    [45]

    Yan Z C, Drake G W F 2000 Phys. Rev. A 61 022504Google Scholar

    [46]

    Zemach A C 1956 Phys. Rev. 104 1771Google Scholar

    [47]

    Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88 032519Google Scholar

    [48]

    Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112Google Scholar

    [49]

    Artoni M, Carusotto I, Minardi F 2000 Phys. Rev. A 62 023402Google Scholar

    [50]

    Brown R C, Wu S J, Porto J V, Sansonetti C J, Simien C E, Brewer S M, Tan J N, Gillaspy J D 2013 Phys. Rev. A 87 032504Google Scholar

    [51]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [52]

    Ramsey N F 1950 Phys. Rev. 78 695Google Scholar

    [53]

    Zhou P P, Sun W, Liang S Y, Chen S L, Zhou Z Q, Huang Y, Guan H, Gao K L 2021 Appl. Opt. 60 6097Google Scholar

    [54]

    Stone N 2016 At. Data Nucl. Data Tables 111 1

    [55]

    Pachucki K, Patkóš V, Yerokhin V A 2023 Phys. Rev. A 108 052802Google Scholar

  • [1] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] Du Xiao-Jiao, Wei Long, Sun Yu, Hu Shui-Ming. Free electron laser prepared high-intensity metastable helium and helium-like ions. Acta Physica Sinica, 2024, 73(15): 150201. doi: 10.7498/aps.73.20240554
    [3] Xiao Zheng-Rong, Zhang Heng-Zhi, Hua Lin-Qiang, Tang Li-Yan, Liu Xiao-Jun. Precision spectroscopic measurements of few-electron atomic systems in extreme ultraviolet region. Acta Physica Sinica, 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [4] Wang Xue-Mei, Zhang An-Qi, Zhao Sheng-Mei. Implementation of controlled phase gate based on superadiabatic shortcut in circuit quantum electrodynamics. Acta Physica Sinica, 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [5] Zhu Xing-Long, Wang Wei-Min, Yu Tong-Pu, He Feng, Chen Min, Weng Su-Ming, Chen Li-Ming, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields. Acta Physica Sinica, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [6] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [7] Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing. Review on laser-driven high-energy polarized electron and positron beams and γ-rays. Acta Physica Sinica, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [8] Zheng Xin, Sun Yu, Chen Jiao-Jiao, Hu Shui-Ming. Precision spectroscopy on the 2 3S-2 3P transition of atomic helium. Acta Physica Sinica, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [9] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [10] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [11] Meng Jian-Yu, Wang Pei-Yue, Feng Wei, Yang Guo-Jian, Li Xin-Qi. On the schemes of cavity photon elimination in circuit-quantum electrodynamics systems. Acta Physica Sinica, 2012, 61(18): 180302. doi: 10.7498/aps.61.180302
    [12] Sun Yu, Feng Gao-Ping, Cheng Cun-Feng, Tu Le-Yi, Pan Hu, Yang Guo-Min, Hu Shui-Ming. Precision spectroscopy of helium using a laser-cooled atomic beam. Acta Physica Sinica, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [13] Chen Xiang, Mi Xian-Wu. Studys of characteristics for pump-induced emission and anharmonic cavity-QED in quantum dot-cavity systems. Acta Physica Sinica, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [14] Yu Xiao-Guang, Wang Bing-Bing, Cheng Tai-Wang, Li Xiao-Feng, Fu Pan-Ming. Quantum electrodynamics theory of high-order above-threshold ionization. Acta Physica Sinica, 2005, 54(8): 3542-3547. doi: 10.7498/aps.54.3542
    [15] Jiang Wei-Zhou, Fu De-Ji, Wang Zhen-Xia, Ai Xiao-Bai, Zhu Zhi-Yuan. Effects of quantum electromagnetic dynamics in a cylindrical ring cavity. Acta Physica Sinica, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [16] YUAN XIAO-LI, SHI YI, YANG HONG-GUAN, BU HUI-MING, WU JUN, ZHAO BO, ZHANG RONG, ZHENG YOU-DOU. CHARGING DYNAMICS OF Si-QUANTUM DOTS IN TUNNEL CAPACITOR. Acta Physica Sinica, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
    [17] LIU LIAO. THE FOAM-LIKE STRUCTURE OF SPACE-TIME AND THE CANCELLATION OF THE DIVERGENCE OF QUANTUM ELECTRODYNAMICS. Acta Physica Sinica, 1998, 47(3): 363-367. doi: 10.7498/aps.47.363
    [18] NI GUANG-JIONG, XU JIAN-JUN. SCALAR QUANTUM ELECTRODYNAMICS WITH CHERN-SIMONS TERM IN (2+1) DIMENSIONS. Acta Physica Sinica, 1991, 40(8): 1217-1221. doi: 10.7498/aps.40.1217
    [19] CHEN ZONG-YUN, ZHOU YI-CHANG, HUANG NIAN-NING. ON THE FUNCTIONAL EVALUATION OF EFFECTIVE POTENTIAL IN SCALAR QED. Acta Physica Sinica, 1982, 31(5): 660-663. doi: 10.7498/aps.31.660
    [20] ИСКЛЮЧЕНИЕ ПРОДОЛЬНЫХ ПОЛЯ В КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКЕ. Acta Physica Sinica, 1955, 11(6): 453-468. doi: 10.7498/aps.11.453
Metrics
  • Abstract views:  1514
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  13 August 2024
  • Accepted Date:  02 September 2024
  • Available Online:  07 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回