Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions

Liu Xin Wen Wei-Qiang Li Ji-Guang Wei Bao-Ren Xiao Jun

Citation:

Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions

Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun
cstr: 32037.14.aps.73.20241190
PDF
HTML
Get Citation
  • The precise measurement of the fine structure and radiative transition properties of highly charged ions (HCI) is essential for testing fundamental physical models, including strong-field quantum electrodynamics (QED) effects, electron correlation effects, relativistic effects, and nuclear effects. These measurements also provide critical atomic physics parameters for astrophysics and fusion plasma physics. Compared with the extensively studied hydrogen-like and lithium-like ion systems, boron-like ions exhibit significant contributions in terms of relativistic and QED effects in their fine structure forbidden transitions. High-precision experimental measurements and theoretical calculations of these systems provide important avenues for further testing fundamental physical models in multi-electron systems. Additionally, boron-like ions are considered promising candidates for HCI optical clocks. This paper presents the latest advancements in experimental and theoretical research on the ground state 2P3/22P1/2 transition in boron-like ions, and summarizes the current understanding of their fine and hyperfine structures. It also discusses a proposed experimental setup for measuring the hyperfine splitting of boron-like ions by using an electron beam ion trap combined with high-resolution spectroscopy. This proposal aims to provide a reference for future experimental research on the hyperfine splitting of boron-like ions, to test the QED effects with higher precision, extract the radius of nuclear magnetization distribution, and validate relevant nuclear structure models.
      Corresponding author: Xiao Jun, xiao_jun@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602504) and the National Natural Science Foundation of China (Grant Nos. 12374228, 12393824, 12474250).
    [1]

    Beyer H F, Shevelko V P 2003 Introduction to the Physics of Highly Charged Ions (Institute of Physics Publishing, wholly owned by The Institute of Physics, London: IOP Publishing Ltd

    [2]

    Indelicato P 2019 J. Phys. B: At. , Mol. Opt. Phys. 52 232001Google Scholar

    [3]

    Nörtershäuser W 2011 Hyperfine Interact. 199 131Google Scholar

    [4]

    Fawcett B C, Gabriel A H, Paget T M 1971 J. Phys. B: At. , Mol. Opt. Phys. 4 986Google Scholar

    [5]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 Astron. Astrophys. 365 L329Google Scholar

    [6]

    Edlén B 1983 Phys. Scr. 28 483Google Scholar

    [7]

    Flower D, Nussbaumer H 1975 Astron. Astrophys. 45 349

    [8]

    Sugar J, Kaufman V, Cooper D 1982 Phys. Scr. 26 293Google Scholar

    [9]

    Wang W, Liu X W, Zhang Y, Barlow M 2004 Astron. Astrophys. 427 873Google Scholar

    [10]

    Stencel R E, Linsky J L, Brown A, Jordan C, Carpenter K G, Wing R F, Czyzak S 1981 Mon. Not. R. Astron. Soc. 196 47PGoogle Scholar

    [11]

    Brekke P, Kjeldseth-Moe O, Bartoe J D F, Brueckner G E 1991 Astrophys. J. Suppl. Ser. 75 1337Google Scholar

    [12]

    King S A, Spieß L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, López-Urrutia J R C, Schmidt P O 2022 Nature 611 43Google Scholar

    [13]

    Kozlov M G, Safronova M S, López-Urrutia J R C, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [14]

    Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [15]

    Edlén B 1943 Z. Astrophys. 22 30

    [16]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar

    [17]

    Draganič I, López-Urrutia J R C, DuBois R, Fritzsche S, Shabaev V M, Orts R S, Tupitsyn I I, Zou Y, Ullrich J 2003 Phys. Rev. Lett. 91 183001Google Scholar

    [18]

    Orts R S, Harman Z, Crespo López-Urrutia J R, Artemyev A N, Bruhns H, Martínez A J G, Jentschura U D, Keitel C H, Lapierre A, Mironov V, Shabaev V M, Tawara H, Tupitsyn I I, Ullrich J, Volotka A V 2006 Phys. Rev. Lett. 97 103002Google Scholar

    [19]

    Mackel V, Klawitter R, Brenner G, López-Urrutia J R C, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [20]

    Micke P, Leopold T, King S A, Benkler E, Spieß L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R, Schmidt P O 2020 Nature 578 60Google Scholar

    [21]

    Klaft I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kühl T, Marx D, Neumann R, Schröder S, Seelig P, Völker L 1994 Phys. Rev. Lett. 73 2425Google Scholar

    [22]

    Lochmann M, Jöhren R, Geppert C, Andelkovic Z, Anielski D, Botermann B, Bussmann M, Dax A, Frömmgen N, Hammen M, Hannen V, Kühl T, Litvinov Y A, López-Coto R, Stöhlker T, Thompson R C, Vollbrecht J, Volotka A, Weinheimer C, Wen W, Will E, Danyal Winters, Sánchez R, Nörtershäuser W 2014 Phys. Rev. A 90 030501(RGoogle Scholar

    [23]

    Ullmann J, Andelkovic Z, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y, Lochmann M, Maass B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2015 J. Phys. B: At. , Mol. Opt. Phys. 48 144022Google Scholar

    [24]

    Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht o, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484Google Scholar

    [25]

    Crespo López-Urrutia J R, Beiersdorfer P, Savin D W, Widmann K 1996 Phys. Rev. Lett. 77 826Google Scholar

    [26]

    Crespo López-Urrutia J R, Beiersdorfer P, Widmann K, Birkett B B, Mårtensson-Pendrill A M, Gustavsson M G H 1998 Phys. Rev. A 57 879Google Scholar

    [27]

    Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824Google Scholar

    [28]

    Beiersdorfer P, Utter S B, Wong K L, López-Urrutia J R C, Britten J A, Chen H, Harris C L, Thoe R S, Thorn D B, Träbert E, Gustavsson M G H, Forssén C, Mårtensson-Pendrill A M 2001 Phys. Rev. A 64 032506Google Scholar

    [29]

    Beiersdorfer P, Osterheld A L, Scofield J H, J. R. Crespo López-Urrutia, Widmann K 1998 Phys. Rev. Lett. 80 3022Google Scholar

    [30]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001Google Scholar

    [31]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [32]

    Shabaev V M, Shabaeva M B, Tupitsyn I I 1995 Phys. Rev. A 52 3686Google Scholar

    [33]

    Shabaev V M, Artemyev A N, Yerokhin V A, Zherebtsov O M, Soff G 2001 Phys. Rev. Lett. 86 3959Google Scholar

    [34]

    Volotka A V, Glazov D A, Andreev O V, Shabaev V M, Tupitsyn I I, Plunien G 2012 Phys. Rev. Lett. 108 073001Google Scholar

    [35]

    Karr J P 2017 Nat. Phys. 13 533Google Scholar

    [36]

    Nörtershäuser W, Ullmann J, Skripnikov L V, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Kraus F, Kresse B, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Privalov A F, Sánchez R, Scheibe B, Schmidt M, Schmidt S, Shabaev V M, Steck M, Stöhlker T, Thompson R C, Trageser C, Vogel M, Vollbrecht J, Volotka A V, Weinheimer C 2019 Hyperfine Interact. 240 51Google Scholar

    [37]

    Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nörtershäuser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M, Volotka A V 2018 Phys. Rev. Lett. 120 093001Google Scholar

    [38]

    Volotka A V, Glazov D A, Tupitsyn I I, Oreshkina N S, Plunien G, Shabaev V M 2008 Phys. Rev. A 78 062507Google Scholar

    [39]

    Glazov D A, Volotka A V, Andreev O V, Kosheleva V P, Fritzsche S, Shabaev V M, Plunien G, Stöhlker T 2019 Phys. Rev. A 99 062503Google Scholar

    [40]

    Verdebout S, Nazé C, Jönsson P, Rynkun P, Godefroid M, Gaigalas G 2014 At. Data Nucl. Data Tables 100 1111Google Scholar

    [41]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111Google Scholar

    [42]

    Verhey T R, Das B P, Perger W F 1987 J. Phys. B: At. Mol. Opt. Phys. 20 3639Google Scholar

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar

    [44]

    Charro E, López-Ferrero S, Martín I 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4243Google Scholar

    [45]

    Tupitsyn I I, Volotka A V, Glazov D A, Shabaev V M, Plunien G, Crespo López-Urrutia J R, Lapierre A, Ullrich J 2005 Phys. Rev. A 72 062503Google Scholar

    [46]

    Koc K 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 235 46Google Scholar

    [47]

    Volotka A, Glazov D, Plunien G, Shabaev V, Tupitsyn I 2006 Eur. Phys. J. D 38 293Google Scholar

    [48]

    Koc K 2009 Eur. Phys. J. D 53 9Google Scholar

    [49]

    Rynkun P, Jönsson P, Gaigalas G, Fischer C F 2012 At. Data Nucl. Data Tables 98 481Google Scholar

    [50]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar

    [51]

    Fischer C F, Grant I P, Gaigalas G, Rynkun P 2016 Phys. Rev. A 93 022505Google Scholar

    [52]

    Malyshev A V, Glazov D A, Volotka A V, Tupitsyn I I, Shabaev V M, Plunien G, Stöhlker T 2017 Phys. Rev. A 96 022512Google Scholar

    [53]

    Bilal M, Volotka A V, Beerwerth R, Fritzsche S 2018 Phys. Rev. A 97 052506Google Scholar

    [54]

    Natarajan L 2021 Phys. Scr. 96 105402Google Scholar

    [55]

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Volotka A V, Kozhedub Y S, Kaygorodov M Y, Huang Z K, Ma W L, Wang S X, Ma X 2021 Phys. Rev. A 104 062804Google Scholar

    [56]

    Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293Google Scholar

    [57]

    Shabaev V M 1994 J. Phys. B: At. , Mol. Opt. Phys. 27 5825Google Scholar

    [58]

    Brandau C, Kozhuharov C, Muller A, Shi W, Schippers S, Bartsch T, Bohm S, Bohme C, Hoffknecht A, Knopp H, Grun N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stohlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202Google Scholar

    [59]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2000 Phys. Rev. Lett. 86 5027Google Scholar

    [60]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808Google Scholar

    [61]

    Brandau C, Kozhuharov C (Shevelko V, Tawara H Ed.) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer Berlin Heidelberg) pp283–306

    [62]

    Huang Z K, Wen W Q, X. Xu c H B W, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 408 135Google Scholar

    [63]

    Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 169Google Scholar

    [64]

    Krantz C, Orlov D A, Bernhardt D, Brandau C, Hoffmann J, Müller A, Ricsoka T, Ricz S, Schippers S, Wolf A 2009 J. Phys. Conf. Ser. 163 012059Google Scholar

    [65]

    Trabert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2002 Phys. Rev. A 66 052507Google Scholar

    [66]

    Träbert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 205 83Google Scholar

    [67]

    Träbert E, Gwinner G, Wolf A, Tordoir X, Calamai A G 1999 Phys. Lett. A 264 311Google Scholar

    [68]

    刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文 2022 物理学报 71 033201Google Scholar

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu GQ, Xiao J, Huang Z K, Wang H B, Chen D Y, Shao L, Yuan Y, Wang S X, Ma W L, Ma X W 2022 Acta Phys. Sin. 71 033201Google Scholar

    [69]

    Beiersdorfer P, Cauble R, Chantrenne S, Chen M, Knapp D, Marrs R, Phillips T, Reed K, Schneider M, Scofield J, Wong K, Vogel D, Zasadzinski R, Wargelin B, Bitter M, Goeler S V 1991 Electron-Ion Interaction Cross Sections Determined by X-ray Spectroscopy on EBIT

    [70]

    Silver E, Schnopper H, Bandler S, Brickhouse N, Murray S, Barbera M, Takacs E, Gillaspy J D, Porto J V, Kink I 2000 Astrophys. J. 541 495Google Scholar

    [71]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Phys. Rev. A 100 052508Google Scholar

    [72]

    Lu D, Yang Y, Xiao J, Shen Y, Fu Y, Wei B, Yao K, Hutton R, Zou Y 2014 Rev. Sci. Instrum. 85 093301Google Scholar

    [73]

    Xiao J, Fei Z, Yang Y, Jin X, Lu D, Shen Y, Liljeby L, Hutton R, Zou Y 2012 Rev. Sci. Instrum. 83 013303Google Scholar

    [74]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference (IPAC2013) Shanghai, China, May 12–17, 2013 pp 434–436

    [75]

    Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804Google Scholar

    [76]

    Shaolong Chen, Zhiqiang Zhou, Jiguang Li, Tingxian Zhang, Chengbin Li, Tingyun Shi, Yao Huang, Kelin Gao, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar

    [77]

    Liang S, Lu Q, Wang X, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S, Zhou P, Sun W, Zhang Y, Huang Y, Guan H, Tong X, Li C, Zou Y, Shi T, Gao K 2019 Rev. Sci. Instrum. 90 093301Google Scholar

    [78]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nucl. Instrum. Methods Phys. Res., Sect. B 460 224Google Scholar

    [79]

    Morton A L, Marrs R E, Henderson J R, Knapp D A, Marilyn B S 1988 Phys. Scr. 1988 157Google Scholar

    [80]

    Beiersdorfer P, Britten J A, Brown G V, Chen H, Clothiaux E J, Cottam J, Förster E, Gu M F, Harris C L, Kahn S M, Lepson J K, Neill P A, Savin D W, Schulte-Schrepping H, Schweikhard L, Smith A J, Träbert E, Tschischgale J, Utter S B, Wong K L 2001 Phys. Scr. 2001 268Google Scholar

    [81]

    Morgan C A, Serpa F G, Takács E, Meyer E S, Gillaspy J D, Sugar J, Roberts J R, Brown C M, Feldman U 1995 Phys. Rev. Lett. 74 1716Google Scholar

    [82]

    Silver J D, Varney A J, Margolis H S, Baird P E G, Grant I P, Groves P D, Hallett W A, Handford A T, Hirst P J, Holmes A R, Howie D J H, Hunt R A, Nobbs K A, Roberts M, Studholme W, Wark J S, Williams M T, Levine M A, Dietrich D D, Graham W G, Williams I D, O’Neil R, Rose S J 1994 Rev. Sci. Instrum. 65 1072Google Scholar

    [83]

    Christoph B, Andreas F, Gerd F, Rainer R 1997 Phys. Scr. 1997 360Google Scholar

    [84]

    Currell F J, Asada J, Ishii K, Minoh A, Motohashi K, Nakamura N, Nishizawa K, Ohtani S, Okazaki K, Sakurai M, Shiraishi H, Tsurubuchi S, Watanabe H 1996 J. Phys. Soc. Jpn. 65 3186Google Scholar

    [85]

    López-Urrutia J R C, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. 1999 502Google Scholar

    [86]

    Mianhong H, Yong L, Yang Y, Shimin W, Weidong C, Wei H, Panlin G, Di L, Yunqing F, Min H, Xuemei Z, Roger H, Leif L, Yaming Z 2007 J. Phys. Conf. Ser. 58 419Google Scholar

    [87]

    Schuch R, Tashenov S, Orban I, Hobein M, Mahmood S, Kamalou O, Akram N, Safdar A, Skog P, Solders A, Zhang H 2010 J. Instrum. 5 C12018Google Scholar

    [88]

    Dilling J, Baartman R, Bricault P, Brodeur M, Blomeley L, Buchinger F, Crawford J, Crespo López-Urrutia J R, Delheij P, Froese M, Gwinner G P, Ke Z, Lee J K P, Moore R B, Ryjkov V, Sikler G, Smith M, Ullrich J, Vaz J 2006 Int. J. Mass Spectrom. 251 198Google Scholar

    [89]

    Nakamura N, Kikuchi H, Sakaue H A, Watanabe T 2008 Rev. Sci. Instrum. 79 063104Google Scholar

    [90]

    Micke P, Kühn S, Buchauer L, Harries J R, Bücking T M, Blaum K, Cieluch A, Egl A, D. Hollain, Kraemer S, Pfeifer T, Schmidt P O, Schüssler R X, Schweiger C, Stöhlker T, Sturm S, Wolf R N, Bernitt S, López-Urrutia J R C 2018 Rev. Sci. Instrum. 89 063109Google Scholar

    [91]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar

    [92]

    Lapierre A, López-Urrutia J R C, Braun J, Brenner G, Bruhns H, Fischer D, Martínez A J G, V. Mironov C O, Sikler G, Orts R S, Tawara H, Ullrich J, V. M. Shabaev, Tupitsyn I I, Volotka A 2006 Phys. Rev. A 73 052507Google Scholar

    [93]

    Mäckel V 2010 (der Ruprecht-Karls-Universität Heidelberg

    [94]

    Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O, López-Urrutia J R C 2015 Science 347 1233Google Scholar

    [95]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749Google Scholar

    [96]

    Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C, Stöhlker T 2016 Phys. Rev. A 93 052502Google Scholar

    [97]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211Google Scholar

  • 图 1  类硼离子结构示意图(以核自旋为1/2的类硼离子为例)

    Figure 1.  Schematic structure of boron like ions (Take the example of a boron like ion with a nuclear spin of 1/2).

    图 2  (a) 通过QED从头计算的类硼离子2P3/22P1/2禁戒跃迁能量的结果与实验结果和MCDF计算结果的对比(QED从头计算[50]; MCDF[54]; 实验结果[6,12,55,56]); (b) Z < 45的放大图

    Figure 2.  (a) Comparison of the results of the forbidden transition energies of the boron-like ions 2P3/22P1/2 calculated by ab initio with experimental and MCDF calculations results (ab initio[50]; MCDF[54]; experimental results[6,12,55,56]); (b) enlarged view of Z < 45.

    图 3  兰州重离子储存环示意图, 包括ECR离子源、扇聚焦回旋加速器(SFC)、大型分离扇回旋加速器(SSC)、SSC直线注入器(SSC Linac)、冷却储存环主环(CSRm)和实验环(CSRe)[62]

    Figure 3.  Schematic diagram of the heavy ion storage ring in Lanzhou, includes the ECR ion source, the sector focusing cyclotron (SFC), the large separating sector cyclotron (SSC), the SSC linear injector (SSC Linac), the CSRm and the CSRe[62].

    图 4  电子束离子阱EBIT的原理结构图以及其中发生的一些原子物理过程[68]

    Figure 4.  Schematic diagram of the principle structure of an electron beam ion trap and some atomic processes occurring within[68].

    图 5  (a) 德国马克斯-普朗克研究所的激光精密谱学实验装置[93]. 蓝色激光束通过反射镜从EBIT的收集极进入EBIT的中心漂移管, 与高电荷态离子相互作用; (b) Ar13+离子的激光结合精密谱学实验原理图[19]

    Figure 5.  (a) Laser Precision Spectroscopy Experimental Setup in Max Planck Institute of Germany[93]. The blue laser beam passes through a reflector from the collection pole of the EBIT into the central drift tube of the EBIT, where it interacts with highly charged state ions; (b) principle Diagram of Laser-Combined Precision Spectroscopy Experiment for Ar13+ ion[19].

    图 6  (a) 实验装置示意图, 包括一个作为 HCI 生产场所的 EBIT、一条用于减速和减少 HCI 串能量扩散的光束线、一个具有外部离子注入功能的低温保罗阱(用于存储 HCI 并将其协同冷却至毫开尔文状态)以及一个用于在313 nm处对Be+冷却剂离子进行激光诱导荧光检测的成像系统[94]; (b) 离子引出过程中漂移管电压变化示意图[94]

    Figure 6.  (a) Illustration of experimental setup consisting of an EBIT as HCI production site, a beamline for deceleration and reduction of energy spread of HCI bunches, a cryogenic Paul trap with external ion injection capabilities for HCI storage and sympathetic cooling to the millikelvin regime, and an imaging system for laser-induced fluorescence detection of the Be+ coolant ions at 313 nm[94]; (b) schematic of the drift tube voltage change during ion elicitation[94].

    图 7  制备双离子晶体的时间序列, 从上到下依次为, 由 50—100 个荧光 9Be+ 离子组成的激光冷却库仑晶体被限制在保罗阱中. 单个Ar13+离子沿晶体轴线注入, 共冷却, 最后与9Be+共晶体化. 由于高电荷状态对9Be+的排斥作用, 它呈现为一个巨大的暗空洞. 在没有激光冷却的情况下, 多余的9Be+离子通过调节Paul阱射频电势, 从而减少多余的离子. 最后, 制备出Ar13+-9Be+双离子晶体[20]

    Figure 7.  Time sequence of HCI recapture and two-ion crystal preparation. In order from top to bottom, a laser-cooled Coulomb crystal of 50–100 fluorescing 9Be+ ions is confined in the Paul trap. A single Ar13+ ion is injected along the crystal axis, sympathetically cooled and finally co-crystallized with 9Be+. It appears as a large dark void owing to the repulsion of the 9Be+ by the high charge state. Excess 9Be+ ions are removed by modulating the Paul trap radio-frequency potential in the absence of laser cooling, resulting in heating and ion losses. Finally, the Ar13+-9Be+ two-ion crystal is prepared[20].

    图 8  两个时钟激光器(Ar13+171Yb+)分别锁定在自己的本地腔体和频率梳上进行预稳定, 并通过数字控制环路最终转向相应的光学转换. 两个频率梳锁定在异常稳定的低温硅腔上. 通过这种方法, 每个光频梳可以获得其时钟激光器与稳定激光器之间的频率比[12]

    Figure 8.  Each of the two clock lasers (Ar13+ and 171Yb+) is locked for pre-stabilization to its own local cavity and frequency comb, and ultimately steered to the corresponding optical transition by a digital control loop. The two frequency combs are locked to the exceptionally stable cryogenic silicon cavity Si2. This method yields for each comb the frequency ratio between its clock laser and the Si2-stabilized laser. The dedicated laboratories are linked through phase-stabilized optical fibres[12].

    图 9  类硼离子16≤Z≤29的计算结果与实验测量结果的比较[55], 图中0处的黑色基线表示Edlén[6]与自己结果的$ \Delta E $, 蓝色表示QED从头计算[50]理论计算结果与Edlén[6]的$ \Delta E $, 红色表示Liu等[55]的实验测量结果与Edlén[6]的$ \Delta E $, 黑色表示Liu等[55]的理论计算结果与Edlén[6]的$ \Delta E $

    Figure 9.  Comparison of calculated results with experimental measurements for the boron-like ions 16 ≤ Z ≤ 29[55], where the black baseline at 0 denotes the ∆E of Edlén[6] versus its own results, the blue box () denotes the ∆E of theoretical calculations of first principles[50] versus Edlén[6], the red circle () denotes the experimental measurements of Xin Liu et al.[55]experimental measurements with ∆E of Edlén[6], and black triangle () denotes the theoretical calculations of Xin Liu et al.[55] with ∆E of Edlén[6].

    图 10  部分适合光学波段测量的类硼离子基态超精细分裂模拟光谱图, 图中给出了模拟光谱的分辨率. 每条线代表F (2P2/3)→F' (2P1/2)跃迁线

    Figure 10.  Simulation of the ground-state hyperfine splitting spectra of some boron-like ions, with the resolution of the corresponding simulated spectra shown. Each line represents the F (2P2/3)→F' (2P1/2) transition line.

    表 1  已有EBIT的主要参数

    Table 1.  Main parameters of available EBIT.

    名称 年份 国家 能量/keV 束流/mA/ 磁场/T 参考文献
    Super EBIT 1986 美国 10—200 150 3 [79]
    EBIT-II 1993 美国 30 200 3 [80]
    NIST EBIT 1993 美国 33 200 3 [81]
    Oxford EBIT 1993 英国 0.7—50 200 2.8 [82]
    Berlin EBIT 1997 德国 40 200 3 [83]
    Tokyo EBIT 1996 日本 180 330 5 [84]
    Heidelberg EBIT 2000 德国 100 535 8 [85]
    Shanghai EBIT 2005 中国 130 160 5 [86]
    Stockholm EBIT 2007 瑞典 27 150 3 [87]
    TITAN EBIT 2007 加拿大 27 500 [88]
    CoBIT 2008 日本 0.1—1 10 0.2 [89]
    SH-PermEBIT 2012 中国 0.06—5 10.2 0.48 [73]
    SH-HtscEBIT 2013 中国 0.03—4 10 0.25 [74]
    HC-EBIT 2018 德国 10 80 0.86 [90]
    SW-EBIT 2019 中国 0.03—4 9 0.21 [77]
    DownLoad: CSV

    表 2  目前已经报道的类硼离子基态精细结构分裂2P3/22P1/2实验测量结果, 其中括号中的数字表示跃迁能量的不确定度

    Table 2.  Experimental measurements of the boron-like ion ground-state fine-structure splitting 2P3/22P1/2 that have been reported so far, where the numbers in parentheses indicate the uncertainties in the transition energies.

    离子 跃迁能量/eV 参考文献 离子 跃迁能量/eV 参考文献
    N2+ 0.02157(13) [6] 40Ar13+ 2.8090135821306312(5) [12]
    O3+ 0.04786(13) [6] 36Ar13+ 2.8090058148895724(5) [12]
    F4+ 0.0924(4) [6] K14+ 3.5963(31) [6]
    Ne5+ 0.1623(5) [6] Ca15+ 4.5397(37) [6]
    Na6+ 0.2652(8) [6] Sc16+ 5.6583(4) [6]
    Mg7+ 0.4094(3) [6] Ti17+ 6.9732(4) [56]
    Al8+ 0.6063(13) [6] V18+ 8.5061(50) [6]
    Si9+ 0.8665(3) [6] Cr19+ 10.2815(17) [56]
    P10+ 1.202(2) [6] Mn20+ 12.3100(12) [6]
    S11+ 1.628860(6) [55] Fe21+ 14.6640(35) [56]
    Cl12+ 2.158835(10) [55] Ni23+ 20.3286(68) [56]
    Cu24+ 23.7154(93) [56]
    DownLoad: CSV

    表 3  已有的高电荷态离子的超精细分裂实验测量结果

    Table 3.  Existing experimental measurements of hyperfine splitting of highly charged ions.

    离子 精度 类型 年份 实验装置 跃迁能级 结果
    209Bi82+ 1.6×10–4 类氢 1994 ESR (1s1/2)F=4, 5 243.87(4) nm[21]
    165Ho66+ 2.6×10–4 类氢 1996 SuperEBIT (1s1/2) F=3, 4 572.61(15) nm[25]
    185Re74+
    187Re74+
    6.6×10–4 类氢 1998 SuperEBIT (1s1/2)F=2, 3 456.05(30) nm[26]
    451.69(30) nm[26]
    209Bi80+ 3.1×10–2 类锂 1998 SuperEBIT (1s22s1/2)F=4, 5 0.820(26) eV[29]
    207Pb81+ 1.9×10–4 类氢 1998 ESR (1s1/2)F=0, 1 1019.7(2) nm[27]
    203Tl80+ 8.9×10–5 类氢 2001 SuperEBIT (1s1/2)F=0, 1 385.822(30) nm[28]
    205Tl80+ 382.184(34) nm[28]
    Sc18+ 1.3×10–2 类锂 2008 ESR (1s22s1/2)F=3, 4 0.00620(8) eV[30]
    141Pr56+ 6.1×10–3 类锂 2014 SuperEBIT (1s22s1/2)F=2, 3 0.1965(12) eV[31]
    1.7×10–2 (1s22p1/2)F=2, 3 0.0640(11) eV[31]
    141Pr55+ 9.4×10–3 类铍 (1s22s1/22p1/2)F=5/2, 7/2 0.1494(14) eV[31]
    1.8×10–2 (1s22s1/22p1/2)F=3/2, 5/2 0.1033(19) eV[31]
    7.1×10–3 (1s22s1/22p1/2)F=3/2, 7/2 0.2531(18) eV[31]
    209Bi82+ 2.1×10–4 类氢 2014 ESR (1s1/2)F=4, 5 5.0863(11) eV[22]
    209Bi80+ 2.3×10–4 类锂 (1s22s1/2)F=4, 5 0.79750(18) eV[22]
    209Bi82+ 2.4×10–5 类氢 2015 ESR (1s1/2)F=4, 5 243.821(6) nm[23]
    209Bi82+ 1.7×10–5 类氢 2017 ESR (1s1/2)F=4, 5 243.8221(8)(43) nm[24]
    209Bi80+ 9.0×10–6 类锂 (1s22s1/2)F=4, 5 1554.377(4)(14) nm[24]
    DownLoad: CSV
  • [1]

    Beyer H F, Shevelko V P 2003 Introduction to the Physics of Highly Charged Ions (Institute of Physics Publishing, wholly owned by The Institute of Physics, London: IOP Publishing Ltd

    [2]

    Indelicato P 2019 J. Phys. B: At. , Mol. Opt. Phys. 52 232001Google Scholar

    [3]

    Nörtershäuser W 2011 Hyperfine Interact. 199 131Google Scholar

    [4]

    Fawcett B C, Gabriel A H, Paget T M 1971 J. Phys. B: At. , Mol. Opt. Phys. 4 986Google Scholar

    [5]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 Astron. Astrophys. 365 L329Google Scholar

    [6]

    Edlén B 1983 Phys. Scr. 28 483Google Scholar

    [7]

    Flower D, Nussbaumer H 1975 Astron. Astrophys. 45 349

    [8]

    Sugar J, Kaufman V, Cooper D 1982 Phys. Scr. 26 293Google Scholar

    [9]

    Wang W, Liu X W, Zhang Y, Barlow M 2004 Astron. Astrophys. 427 873Google Scholar

    [10]

    Stencel R E, Linsky J L, Brown A, Jordan C, Carpenter K G, Wing R F, Czyzak S 1981 Mon. Not. R. Astron. Soc. 196 47PGoogle Scholar

    [11]

    Brekke P, Kjeldseth-Moe O, Bartoe J D F, Brueckner G E 1991 Astrophys. J. Suppl. Ser. 75 1337Google Scholar

    [12]

    King S A, Spieß L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, López-Urrutia J R C, Schmidt P O 2022 Nature 611 43Google Scholar

    [13]

    Kozlov M G, Safronova M S, López-Urrutia J R C, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [14]

    Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [15]

    Edlén B 1943 Z. Astrophys. 22 30

    [16]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar

    [17]

    Draganič I, López-Urrutia J R C, DuBois R, Fritzsche S, Shabaev V M, Orts R S, Tupitsyn I I, Zou Y, Ullrich J 2003 Phys. Rev. Lett. 91 183001Google Scholar

    [18]

    Orts R S, Harman Z, Crespo López-Urrutia J R, Artemyev A N, Bruhns H, Martínez A J G, Jentschura U D, Keitel C H, Lapierre A, Mironov V, Shabaev V M, Tawara H, Tupitsyn I I, Ullrich J, Volotka A V 2006 Phys. Rev. Lett. 97 103002Google Scholar

    [19]

    Mackel V, Klawitter R, Brenner G, López-Urrutia J R C, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [20]

    Micke P, Leopold T, King S A, Benkler E, Spieß L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R, Schmidt P O 2020 Nature 578 60Google Scholar

    [21]

    Klaft I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kühl T, Marx D, Neumann R, Schröder S, Seelig P, Völker L 1994 Phys. Rev. Lett. 73 2425Google Scholar

    [22]

    Lochmann M, Jöhren R, Geppert C, Andelkovic Z, Anielski D, Botermann B, Bussmann M, Dax A, Frömmgen N, Hammen M, Hannen V, Kühl T, Litvinov Y A, López-Coto R, Stöhlker T, Thompson R C, Vollbrecht J, Volotka A, Weinheimer C, Wen W, Will E, Danyal Winters, Sánchez R, Nörtershäuser W 2014 Phys. Rev. A 90 030501(RGoogle Scholar

    [23]

    Ullmann J, Andelkovic Z, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y, Lochmann M, Maass B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2015 J. Phys. B: At. , Mol. Opt. Phys. 48 144022Google Scholar

    [24]

    Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht o, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484Google Scholar

    [25]

    Crespo López-Urrutia J R, Beiersdorfer P, Savin D W, Widmann K 1996 Phys. Rev. Lett. 77 826Google Scholar

    [26]

    Crespo López-Urrutia J R, Beiersdorfer P, Widmann K, Birkett B B, Mårtensson-Pendrill A M, Gustavsson M G H 1998 Phys. Rev. A 57 879Google Scholar

    [27]

    Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824Google Scholar

    [28]

    Beiersdorfer P, Utter S B, Wong K L, López-Urrutia J R C, Britten J A, Chen H, Harris C L, Thoe R S, Thorn D B, Träbert E, Gustavsson M G H, Forssén C, Mårtensson-Pendrill A M 2001 Phys. Rev. A 64 032506Google Scholar

    [29]

    Beiersdorfer P, Osterheld A L, Scofield J H, J. R. Crespo López-Urrutia, Widmann K 1998 Phys. Rev. Lett. 80 3022Google Scholar

    [30]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001Google Scholar

    [31]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [32]

    Shabaev V M, Shabaeva M B, Tupitsyn I I 1995 Phys. Rev. A 52 3686Google Scholar

    [33]

    Shabaev V M, Artemyev A N, Yerokhin V A, Zherebtsov O M, Soff G 2001 Phys. Rev. Lett. 86 3959Google Scholar

    [34]

    Volotka A V, Glazov D A, Andreev O V, Shabaev V M, Tupitsyn I I, Plunien G 2012 Phys. Rev. Lett. 108 073001Google Scholar

    [35]

    Karr J P 2017 Nat. Phys. 13 533Google Scholar

    [36]

    Nörtershäuser W, Ullmann J, Skripnikov L V, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Kraus F, Kresse B, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Privalov A F, Sánchez R, Scheibe B, Schmidt M, Schmidt S, Shabaev V M, Steck M, Stöhlker T, Thompson R C, Trageser C, Vogel M, Vollbrecht J, Volotka A V, Weinheimer C 2019 Hyperfine Interact. 240 51Google Scholar

    [37]

    Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nörtershäuser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M, Volotka A V 2018 Phys. Rev. Lett. 120 093001Google Scholar

    [38]

    Volotka A V, Glazov D A, Tupitsyn I I, Oreshkina N S, Plunien G, Shabaev V M 2008 Phys. Rev. A 78 062507Google Scholar

    [39]

    Glazov D A, Volotka A V, Andreev O V, Kosheleva V P, Fritzsche S, Shabaev V M, Plunien G, Stöhlker T 2019 Phys. Rev. A 99 062503Google Scholar

    [40]

    Verdebout S, Nazé C, Jönsson P, Rynkun P, Godefroid M, Gaigalas G 2014 At. Data Nucl. Data Tables 100 1111Google Scholar

    [41]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111Google Scholar

    [42]

    Verhey T R, Das B P, Perger W F 1987 J. Phys. B: At. Mol. Opt. Phys. 20 3639Google Scholar

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar

    [44]

    Charro E, López-Ferrero S, Martín I 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4243Google Scholar

    [45]

    Tupitsyn I I, Volotka A V, Glazov D A, Shabaev V M, Plunien G, Crespo López-Urrutia J R, Lapierre A, Ullrich J 2005 Phys. Rev. A 72 062503Google Scholar

    [46]

    Koc K 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 235 46Google Scholar

    [47]

    Volotka A, Glazov D, Plunien G, Shabaev V, Tupitsyn I 2006 Eur. Phys. J. D 38 293Google Scholar

    [48]

    Koc K 2009 Eur. Phys. J. D 53 9Google Scholar

    [49]

    Rynkun P, Jönsson P, Gaigalas G, Fischer C F 2012 At. Data Nucl. Data Tables 98 481Google Scholar

    [50]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar

    [51]

    Fischer C F, Grant I P, Gaigalas G, Rynkun P 2016 Phys. Rev. A 93 022505Google Scholar

    [52]

    Malyshev A V, Glazov D A, Volotka A V, Tupitsyn I I, Shabaev V M, Plunien G, Stöhlker T 2017 Phys. Rev. A 96 022512Google Scholar

    [53]

    Bilal M, Volotka A V, Beerwerth R, Fritzsche S 2018 Phys. Rev. A 97 052506Google Scholar

    [54]

    Natarajan L 2021 Phys. Scr. 96 105402Google Scholar

    [55]

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Volotka A V, Kozhedub Y S, Kaygorodov M Y, Huang Z K, Ma W L, Wang S X, Ma X 2021 Phys. Rev. A 104 062804Google Scholar

    [56]

    Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293Google Scholar

    [57]

    Shabaev V M 1994 J. Phys. B: At. , Mol. Opt. Phys. 27 5825Google Scholar

    [58]

    Brandau C, Kozhuharov C, Muller A, Shi W, Schippers S, Bartsch T, Bohm S, Bohme C, Hoffknecht A, Knopp H, Grun N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stohlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202Google Scholar

    [59]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2000 Phys. Rev. Lett. 86 5027Google Scholar

    [60]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808Google Scholar

    [61]

    Brandau C, Kozhuharov C (Shevelko V, Tawara H Ed.) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer Berlin Heidelberg) pp283–306

    [62]

    Huang Z K, Wen W Q, X. Xu c H B W, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 408 135Google Scholar

    [63]

    Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 169Google Scholar

    [64]

    Krantz C, Orlov D A, Bernhardt D, Brandau C, Hoffmann J, Müller A, Ricsoka T, Ricz S, Schippers S, Wolf A 2009 J. Phys. Conf. Ser. 163 012059Google Scholar

    [65]

    Trabert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2002 Phys. Rev. A 66 052507Google Scholar

    [66]

    Träbert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 205 83Google Scholar

    [67]

    Träbert E, Gwinner G, Wolf A, Tordoir X, Calamai A G 1999 Phys. Lett. A 264 311Google Scholar

    [68]

    刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文 2022 物理学报 71 033201Google Scholar

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu GQ, Xiao J, Huang Z K, Wang H B, Chen D Y, Shao L, Yuan Y, Wang S X, Ma W L, Ma X W 2022 Acta Phys. Sin. 71 033201Google Scholar

    [69]

    Beiersdorfer P, Cauble R, Chantrenne S, Chen M, Knapp D, Marrs R, Phillips T, Reed K, Schneider M, Scofield J, Wong K, Vogel D, Zasadzinski R, Wargelin B, Bitter M, Goeler S V 1991 Electron-Ion Interaction Cross Sections Determined by X-ray Spectroscopy on EBIT

    [70]

    Silver E, Schnopper H, Bandler S, Brickhouse N, Murray S, Barbera M, Takacs E, Gillaspy J D, Porto J V, Kink I 2000 Astrophys. J. 541 495Google Scholar

    [71]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Phys. Rev. A 100 052508Google Scholar

    [72]

    Lu D, Yang Y, Xiao J, Shen Y, Fu Y, Wei B, Yao K, Hutton R, Zou Y 2014 Rev. Sci. Instrum. 85 093301Google Scholar

    [73]

    Xiao J, Fei Z, Yang Y, Jin X, Lu D, Shen Y, Liljeby L, Hutton R, Zou Y 2012 Rev. Sci. Instrum. 83 013303Google Scholar

    [74]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference (IPAC2013) Shanghai, China, May 12–17, 2013 pp 434–436

    [75]

    Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804Google Scholar

    [76]

    Shaolong Chen, Zhiqiang Zhou, Jiguang Li, Tingxian Zhang, Chengbin Li, Tingyun Shi, Yao Huang, Kelin Gao, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar

    [77]

    Liang S, Lu Q, Wang X, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S, Zhou P, Sun W, Zhang Y, Huang Y, Guan H, Tong X, Li C, Zou Y, Shi T, Gao K 2019 Rev. Sci. Instrum. 90 093301Google Scholar

    [78]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nucl. Instrum. Methods Phys. Res., Sect. B 460 224Google Scholar

    [79]

    Morton A L, Marrs R E, Henderson J R, Knapp D A, Marilyn B S 1988 Phys. Scr. 1988 157Google Scholar

    [80]

    Beiersdorfer P, Britten J A, Brown G V, Chen H, Clothiaux E J, Cottam J, Förster E, Gu M F, Harris C L, Kahn S M, Lepson J K, Neill P A, Savin D W, Schulte-Schrepping H, Schweikhard L, Smith A J, Träbert E, Tschischgale J, Utter S B, Wong K L 2001 Phys. Scr. 2001 268Google Scholar

    [81]

    Morgan C A, Serpa F G, Takács E, Meyer E S, Gillaspy J D, Sugar J, Roberts J R, Brown C M, Feldman U 1995 Phys. Rev. Lett. 74 1716Google Scholar

    [82]

    Silver J D, Varney A J, Margolis H S, Baird P E G, Grant I P, Groves P D, Hallett W A, Handford A T, Hirst P J, Holmes A R, Howie D J H, Hunt R A, Nobbs K A, Roberts M, Studholme W, Wark J S, Williams M T, Levine M A, Dietrich D D, Graham W G, Williams I D, O’Neil R, Rose S J 1994 Rev. Sci. Instrum. 65 1072Google Scholar

    [83]

    Christoph B, Andreas F, Gerd F, Rainer R 1997 Phys. Scr. 1997 360Google Scholar

    [84]

    Currell F J, Asada J, Ishii K, Minoh A, Motohashi K, Nakamura N, Nishizawa K, Ohtani S, Okazaki K, Sakurai M, Shiraishi H, Tsurubuchi S, Watanabe H 1996 J. Phys. Soc. Jpn. 65 3186Google Scholar

    [85]

    López-Urrutia J R C, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. 1999 502Google Scholar

    [86]

    Mianhong H, Yong L, Yang Y, Shimin W, Weidong C, Wei H, Panlin G, Di L, Yunqing F, Min H, Xuemei Z, Roger H, Leif L, Yaming Z 2007 J. Phys. Conf. Ser. 58 419Google Scholar

    [87]

    Schuch R, Tashenov S, Orban I, Hobein M, Mahmood S, Kamalou O, Akram N, Safdar A, Skog P, Solders A, Zhang H 2010 J. Instrum. 5 C12018Google Scholar

    [88]

    Dilling J, Baartman R, Bricault P, Brodeur M, Blomeley L, Buchinger F, Crawford J, Crespo López-Urrutia J R, Delheij P, Froese M, Gwinner G P, Ke Z, Lee J K P, Moore R B, Ryjkov V, Sikler G, Smith M, Ullrich J, Vaz J 2006 Int. J. Mass Spectrom. 251 198Google Scholar

    [89]

    Nakamura N, Kikuchi H, Sakaue H A, Watanabe T 2008 Rev. Sci. Instrum. 79 063104Google Scholar

    [90]

    Micke P, Kühn S, Buchauer L, Harries J R, Bücking T M, Blaum K, Cieluch A, Egl A, D. Hollain, Kraemer S, Pfeifer T, Schmidt P O, Schüssler R X, Schweiger C, Stöhlker T, Sturm S, Wolf R N, Bernitt S, López-Urrutia J R C 2018 Rev. Sci. Instrum. 89 063109Google Scholar

    [91]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar

    [92]

    Lapierre A, López-Urrutia J R C, Braun J, Brenner G, Bruhns H, Fischer D, Martínez A J G, V. Mironov C O, Sikler G, Orts R S, Tawara H, Ullrich J, V. M. Shabaev, Tupitsyn I I, Volotka A 2006 Phys. Rev. A 73 052507Google Scholar

    [93]

    Mäckel V 2010 (der Ruprecht-Karls-Universität Heidelberg

    [94]

    Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O, López-Urrutia J R C 2015 Science 347 1233Google Scholar

    [95]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749Google Scholar

    [96]

    Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C, Stöhlker T 2016 Phys. Rev. A 93 052502Google Scholar

    [97]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211Google Scholar

  • [1] Huang Hou-Ke, Wen Wei-Qiang, Huang Zhong-Kui, Wang Shu-Xing, Tang Mei-Tang, Li Jie, Mao Li-Jun, Yuan Yang, Wan Meng-Yu, Liu Chang, Wang Han-Bin, Zhou Xiao-Peng, Zhao Dong-Mei, Yan Kai-Min, Zhou Yun-Bin, Yuan You-Jin, Yang Jian-Cheng, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen. Precision spectroscopy of dielectronic recombination experiments for highly charged ions at large facility HIAF: a simulation study. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241589
    [2] Guan Hua, Qi Xiao-Qiu, Chen Shao-Long, Shi Ting-Yun, Gao Ke-Lin. Precision spectroscopy and nuclear structure information of Li+ ions. Acta Physica Sinica, 2024, 73(20): 204203. doi: 10.7498/aps.73.20241128
    [3] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He. Acta Physica Sinica, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [4] Zhong Zhen-Xiang. Review of the hyperfine structure theory of hydrogen molecular ions. Acta Physica Sinica, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [5] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [6] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [7] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [8] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [9] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [10] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min. Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [11] Yang Zhao-Rui, Zhang Xiao-An, Xu Qiu-Mei, Yang Zhi-Hu. Visible light emission produced by interaction of highly ionized Krq+ ions with a Al surface. Acta Physica Sinica, 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [12] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [13] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [14] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [15] Peng Hai-Bo, Wang Tie-Shan, Han Yun-Cheng, Ding Da-Jie, Xu He, Cheng Rui, Zhao Yong-Tao, Wang Yu-Yu. Study of channeling effect by impact of highly charged ions on crystal surface of Si(110). Acta Physica Sinica, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [16] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [17] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [18] Wang Yu-Yu, Zhao Yong-Tao, Xiao Guo-Qing, Fang Yan, Zhang Xiao-An, Wang Tie-Shan, Wang Shi-Wei, Peng Hai-Bo. Electron emission induced by the interaction of highly charged ions 207Pbq+(24≤q≤36) with solid surface of Si(110). Acta Physica Sinica, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [19] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] Jiang Wei-Zhou, Fu De-Ji, Wang Zhen-Xia, Ai Xiao-Bai, Zhu Zhi-Yuan. Effects of quantum electromagnetic dynamics in a cylindrical ring cavity. Acta Physica Sinica, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
Metrics
  • Abstract views:  1976
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2024
  • Accepted Date:  09 September 2024
  • Available Online:  19 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回