Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He

Wu Yi-Jiao Meng Tian-Ming Zhang Xian-Wen Tan Xu Ma Pu-Fang Yin Hao Ren Bai-Hui Tu Bing-Sheng Zhang Rui-Tian Xiao Jun Ma Xin-Wen Zou Ya-Ming Wei Bao-Ren

Citation:

Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He

Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren
cstr: 32037.14.aps.73.20241290
PDF
HTML
Get Citation
  • Electron capture in the collision of highly charged ions with atoms and molecules is a fundamental process related to the electron transition between bound states belonging to two atomic-centers. The X-ray emission after electron capture is important for X-ray astrophysical modeling, fusion plasma diagnostics, and ion irradiated biophysics. In the past few decades, momentum-imaging cold-target recoil ion momentum spectroscopy has been a significantly developed technique and widely used to measure the quantum state-selective population in electron capture processes. Based on the cold target recoil ion momentum spectroscopy installed on the 150 kV highly charged ion platform in Fudan University, Shanghai City, China, the state-selectivity of double electron capture in the bombardment of 1.4–20 keV/u Ar8+ on He is measured, and the relative cross sections of the 3l 3l' to 3l 7l' double excited states are obtained. It is found that with the increase of collision energy, more quantum state-selectivity channels are open in the double electron capture of Ar8+-He collision. It is also found that the relative cross section of the quantum state population is strongly dependent on the collision energy of the projectile ion. The present measurements not only enrich the state-selective cross-sectional library and collision dynamics of highly charged ion charge exchange processes, but also provide experimental benchmarks for existing theoretical calculations.
      Corresponding author: Zhang Rui-Tian, zhangrt@impcas.ac.cn ; Wei Bao-Ren, brwei@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602504), the National Natural Science Foundation of China (Grant Nos. 12204110, 12374227, U1832201), the Shanghai Municipal Key Discipline Construction Project Funding, China (Grant No. B107), and the Strategic Leading Science and Technology Project of Chinese Academy of Sciences (Class B) (Grant No. XDB34020302).
    [1]

    Abdallah M A, Wollf W, Wolf H E, Kamber E Y, Stöckli M, Cocke C L 1998 Phys. Rev. A 58 2911Google Scholar

    [2]

    Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708Google Scholar

    [3]

    Cumbee R S, Henley D B, Stancil P C, Shelton R L, Nolte J L, Wu Y, Schultz D R 2014 Astrophys. J. Lett. 787 L31Google Scholar

    [4]

    Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt J W, Yamaguchi H 2011 Astrophys. J. 730 24Google Scholar

    [5]

    Liu J, Wang Q D, Mao S 2012 Mon. Not. R. Astron. Soc. 420 3389Google Scholar

    [6]

    Hoekstra R, Anderson H, Bliek F W, von Hellermann M, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar

    [7]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [8]

    徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文 2021 物理学报 70 080702Google Scholar

    Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Zhao D M, Liang G Y, Guo D L, Gao Y, Zhang S F, Su M G, Ma X W 2021 Acta Phys. Sin. 70 080702Google Scholar

    [9]

    Meng T, Ma M X, Tu B, Ma P, Zhang Y W, Liu L, Xiao J, Yao K, Zou Y, Wu Y, Wang J G, Wei B 2023 New J. Phys. 25 093026Google Scholar

    [10]

    Fischer D, Gudmundsson M, Berényi Z, Haag N, Johansson H A B, Misra D, Reinhed P, Källberg A, Simonsson A, Støchkel K, Cederquist H, Schmidt H T 2010 Phys. Rev. A 81 012714Google Scholar

    [11]

    Roncin P, Barat M, Laurent H 1986 Eur. Phys. Lett. 2 371Google Scholar

    [12]

    Hutton R, Prior M H, Chantrenne S, Chen M H, Schneider D 1989 Phys. Rev. A 39 4902Google Scholar

    [13]

    Mack M, Nijland J H, Straten P V D, Niehaus A, Morgenstern R 1989 Phys. Rev. A 39 3846Google Scholar

    [14]

    Posthumus J H, Morgenstern R 1990 J. Phys. B 23 2293Google Scholar

    [15]

    Posthumus J H, Lukey P, Morgenstern R 1992 J. Phys. B 25 987Google Scholar

    [16]

    Lee A R, Wilkins A C R, Brenton A G 1996 Int. J. Mass Spectrom. Ion Process. 152 201Google Scholar

    [17]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [18]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [19]

    Fléchard X, Harel C, Jouin H, Pons B, Adoui L, Frémont F, Cassimi A, Hennecart D 2001 J. Phys. B 34 2759Google Scholar

    [20]

    吕瑛, 陈熙萌, 曹柱荣, 吴卫东 2010 物理学报 59 3892Google Scholar

    Lü Y, Chen X M, Cao Z R, Wu W D 2010 Acta Phys. Sin. 59 3892Google Scholar

    [21]

    Cumbee R S, Liu L, Lyons D, Schultz D R, Stancil P C, Wang J R, Ali R 2016 Mon. Not. R. Astron. Soc. 458 3554Google Scholar

    [22]

    Niehaus A 1986 J. Phys. B 19 2925Google Scholar

    [23]

    Olson R E, Salop A 1976 Phys. Rev. A 14 579Google Scholar

    [24]

    Fritsch W, Lin C D 1984 Phys. Rev. A 29 3039Google Scholar

    [25]

    Kimura M, Lane N F 1989 Adv. At. Mol. Opt. Phys. 26 79Google Scholar

    [26]

    Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710Google Scholar

    [27]

    Bliman S, Suraud M, Hitz D, Huber B, Lebius H, Cornille M, Rubensson J, Nordgren J, Knystautas E 1992 Phys. Rev. A 46 1321Google Scholar

    [28]

    Druetta M, Martin S, Bouchama T, Harel C, Jouin H 1987 Phys. Rev. A 36 3071Google Scholar

    [29]

    Boduch P, Chantepie M, Hennecart D, Husson X, Kucal H, Lecler D, Stolterfoht N, Druetta M, Fawcett B, Wilson M 1992 Phys. Scr. 45 203Google Scholar

    [30]

    曹柱荣, 蔡晓红, 于得洋, 杨威, 卢荣春, 邵曹杰, 陈熙萌 2004 物理学报 53 2943Google Scholar

    Cao Z R, Cai X H, Yu D Y, Yang W, Lu R C, Shao C J, Chen X M 2004 Acta Phys. Sin. 53 2943Google Scholar

    [31]

    Siddiki M A K A, Zhao G, Liu L, Misra D 2024 Phys. Rev. A 109 032819Google Scholar

    [32]

    Zhang R T, Gao J W, Zhang Y W, Guo D L, Gao Y, Zhu X L, Xu J W, Zhao D M, Yan S, Xu S, Zhang S F, Wu Y, Wang J G, Ma X 2023 Phys. Rev. Res. 5 023123Google Scholar

    [33]

    Zhang Y W, Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2022 Phys. Rev. A 106 042809Google Scholar

    [34]

    陈兰芳, 马新文, 朱小龙 2006 物理学报 55 6347Google Scholar

    Chen L F, Ma X W, Zhu X L 2006 Acta Phys. Sin. 55 6347Google Scholar

    [35]

    Raphaelian M, Berry H, Berrah N, Schneider D 1993 Phys. Rev. A 48 1292Google Scholar

  • 图 1  复旦大学150 kV高电荷态离子平台及冷靶反冲离子动量谱仪装置示意图

    Figure 1.  Schematic diagram of the COLTRIMS apparatus at 150 kV high voltage platform in Fudan University.

    图 2  12.0 keV/u的Ar8+与He原子碰撞中发生双电子俘获后反冲离子的一维位置谱(黑色点为测量的实验数据点, 红色实线为高斯拟合曲线)

    Figure 2.  One-dimensional position spectrum of the recoil ion of double electrons capture in the 12.0 keV/u Ar8+ collision with He. The black dots represent the measured experimental data, and the red solid line represents the Gaussian fitting curve.

    图 3  Ar8+与He碰撞中双电子俘获的Q值谱(黑色点为测量的实验数据点, 蓝色虚线为高斯曲线拟合, 红色实线为高斯拟合结果的总和)

    Figure 3.  Measured Q spectra between Ar8+ and He. The black dots represent the measured experimental data. The blue dashed lines and red solid lines represent the Gaussian curve fitting and the sum of the Gaussian fitting results, respectively.

    图 4  Ar8+与 He 碰撞中双电子俘获截面对碰撞能量的依赖关系, 实心灰色方块、蓝色三角和红色三角点为实验测量结果(实线为引导线), 虚线为Zhang等[33]的计算结果, 不同的颜色与形状代表不同的俘获通道

    Figure 4.  Dependence of cross section of double electron capture into doubly excited states on collision energy in Ar8+ collision with He. The gray squares, blue triangles and red triangles are the experimentally measured results (The solid lines are used to guide the eyes), and the dashed lines are the calculated results of Zhang et al.[33].

    表 1  Ar8+与He双电子俘获的nl分辨的量子态选择相对截面(括号内为误差值(%))

    Table 1.  Measured relative state-selective cross sections for DEC in collisions of Ar8+ with He (Error value (%) in parentheses).

    Energy/(keV·u–1) ${ nl} { n'l}'$
    3p7l 3s10l 3s6l 3p4p 3s4s 3s3d 3p2 3s3p
    1.4 35.4(3.8) 26.4(2.9) 22.8(2.5) 9.1(1.2) 3.9(0.6)
    2.2 32.0(3.4) 22.5(2.4) 24.2(2.6) 11.9(1.4) 7.4(0.9)
    3.0 24.5(2.6) 21.5(2.3) 26.6(2.9) 15.9(1.7) 9.1(1.0) 0.6(0.4) 0.3(0.0)
    4.0 19.3(2.3) 20.6(2.5) 27.0(3.0) 17.0(1.8) 12.1(1.3) 1.1(0.2) 0.4(0.2)
    5.2 17.6(1.9) 19.7(2.1) 26.7(2.9) 17.3(1.9) 14.6(1.6) 2.2(0.4) 0.5(0.3)
    6.4 17.4(1.9) 18.8(2.0) 24.5(2.6) 16.9(1.8) 16.9(1.8) 3.3(0.7) 0.8(0.6) 0.2(0.2)
    8.0 17.1(1.8) 18.6(2.0) 22.0(2.4) 16.0(1.7) 18.8(2.0) 4.7(0.6) 1.3(0.5) 0.4(0.3)
    10.0 15.2(1.7) 18.1(2.0) 19.1(2.1) 17.6(1.9) 19.4(2.1) 6.8(1.0) 2.2(0.7) 0.7(0.5)
    12.0 14.6(1.6) 17.1(2.0) 16.4(1.8) 19.1(2.1) 20.2(2.1) 7.8(1.0) 2.7(0.6) 1.1(0.3)
    14.4 12.0(1.4) 16.0(1.8) 16.7(1.8) 21.8(2.4) 19.3(2.1) 9.1(1.1) 2.2(0.7) 1.8(0.5)
    17.0 10.6(1.2) 15.1(1.7) 16.8(1.8) 24.2(2.6) 18.8(2.1) 8.9(1.2) 1.6(0.5) 2.9(0.5)
    20.0 11.3(1.3) 16.6(1.9) 15.6(1.9) 28.7(3.5) 15.1(2.0) 8.6(1.4) 1.3(0.9) 2.3(0.5)
    DownLoad: CSV
  • [1]

    Abdallah M A, Wollf W, Wolf H E, Kamber E Y, Stöckli M, Cocke C L 1998 Phys. Rev. A 58 2911Google Scholar

    [2]

    Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708Google Scholar

    [3]

    Cumbee R S, Henley D B, Stancil P C, Shelton R L, Nolte J L, Wu Y, Schultz D R 2014 Astrophys. J. Lett. 787 L31Google Scholar

    [4]

    Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt J W, Yamaguchi H 2011 Astrophys. J. 730 24Google Scholar

    [5]

    Liu J, Wang Q D, Mao S 2012 Mon. Not. R. Astron. Soc. 420 3389Google Scholar

    [6]

    Hoekstra R, Anderson H, Bliek F W, von Hellermann M, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar

    [7]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [8]

    徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文 2021 物理学报 70 080702Google Scholar

    Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Zhao D M, Liang G Y, Guo D L, Gao Y, Zhang S F, Su M G, Ma X W 2021 Acta Phys. Sin. 70 080702Google Scholar

    [9]

    Meng T, Ma M X, Tu B, Ma P, Zhang Y W, Liu L, Xiao J, Yao K, Zou Y, Wu Y, Wang J G, Wei B 2023 New J. Phys. 25 093026Google Scholar

    [10]

    Fischer D, Gudmundsson M, Berényi Z, Haag N, Johansson H A B, Misra D, Reinhed P, Källberg A, Simonsson A, Støchkel K, Cederquist H, Schmidt H T 2010 Phys. Rev. A 81 012714Google Scholar

    [11]

    Roncin P, Barat M, Laurent H 1986 Eur. Phys. Lett. 2 371Google Scholar

    [12]

    Hutton R, Prior M H, Chantrenne S, Chen M H, Schneider D 1989 Phys. Rev. A 39 4902Google Scholar

    [13]

    Mack M, Nijland J H, Straten P V D, Niehaus A, Morgenstern R 1989 Phys. Rev. A 39 3846Google Scholar

    [14]

    Posthumus J H, Morgenstern R 1990 J. Phys. B 23 2293Google Scholar

    [15]

    Posthumus J H, Lukey P, Morgenstern R 1992 J. Phys. B 25 987Google Scholar

    [16]

    Lee A R, Wilkins A C R, Brenton A G 1996 Int. J. Mass Spectrom. Ion Process. 152 201Google Scholar

    [17]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [18]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [19]

    Fléchard X, Harel C, Jouin H, Pons B, Adoui L, Frémont F, Cassimi A, Hennecart D 2001 J. Phys. B 34 2759Google Scholar

    [20]

    吕瑛, 陈熙萌, 曹柱荣, 吴卫东 2010 物理学报 59 3892Google Scholar

    Lü Y, Chen X M, Cao Z R, Wu W D 2010 Acta Phys. Sin. 59 3892Google Scholar

    [21]

    Cumbee R S, Liu L, Lyons D, Schultz D R, Stancil P C, Wang J R, Ali R 2016 Mon. Not. R. Astron. Soc. 458 3554Google Scholar

    [22]

    Niehaus A 1986 J. Phys. B 19 2925Google Scholar

    [23]

    Olson R E, Salop A 1976 Phys. Rev. A 14 579Google Scholar

    [24]

    Fritsch W, Lin C D 1984 Phys. Rev. A 29 3039Google Scholar

    [25]

    Kimura M, Lane N F 1989 Adv. At. Mol. Opt. Phys. 26 79Google Scholar

    [26]

    Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710Google Scholar

    [27]

    Bliman S, Suraud M, Hitz D, Huber B, Lebius H, Cornille M, Rubensson J, Nordgren J, Knystautas E 1992 Phys. Rev. A 46 1321Google Scholar

    [28]

    Druetta M, Martin S, Bouchama T, Harel C, Jouin H 1987 Phys. Rev. A 36 3071Google Scholar

    [29]

    Boduch P, Chantepie M, Hennecart D, Husson X, Kucal H, Lecler D, Stolterfoht N, Druetta M, Fawcett B, Wilson M 1992 Phys. Scr. 45 203Google Scholar

    [30]

    曹柱荣, 蔡晓红, 于得洋, 杨威, 卢荣春, 邵曹杰, 陈熙萌 2004 物理学报 53 2943Google Scholar

    Cao Z R, Cai X H, Yu D Y, Yang W, Lu R C, Shao C J, Chen X M 2004 Acta Phys. Sin. 53 2943Google Scholar

    [31]

    Siddiki M A K A, Zhao G, Liu L, Misra D 2024 Phys. Rev. A 109 032819Google Scholar

    [32]

    Zhang R T, Gao J W, Zhang Y W, Guo D L, Gao Y, Zhu X L, Xu J W, Zhao D M, Yan S, Xu S, Zhang S F, Wu Y, Wang J G, Ma X 2023 Phys. Rev. Res. 5 023123Google Scholar

    [33]

    Zhang Y W, Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2022 Phys. Rev. A 106 042809Google Scholar

    [34]

    陈兰芳, 马新文, 朱小龙 2006 物理学报 55 6347Google Scholar

    Chen L F, Ma X W, Zhu X L 2006 Acta Phys. Sin. 55 6347Google Scholar

    [35]

    Raphaelian M, Berry H, Berrah N, Schneider D 1993 Phys. Rev. A 48 1292Google Scholar

  • [1] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] Wang Guo-Dong, Cheng Rui, Wang Zhao, Zhou Ze-Xian, Luo Xia-Hui, Shi Lu-Lin, Chen Yan-Hong, Lei Yu, Wang Yu-Yu, Yang Jie. Target polarization effect on energy loss of O5+ ions near Bohr velocity in low density hydrogen plasma. Acta Physica Sinica, 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [3] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [4] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [5] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] Zhang Bing-Zhang,  Song Zhang-Yong,  Zhang Ming-Wu,  Liu Xuan,  Qian Cheng,  Fang Xin,  Shao Chao-Jie,  Wang Wei,  Liu Jun-Liang,  Zhu Zhi-Chao,  Sun Liang-Ting,  Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [7] Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [8] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [9] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [10] Xu Qiu-Mei, Yang Zhi-Hu, Guo Yi-Pan, Liu Hui-Ping, Chen Yan-Hong, Zhao Hong-Yun. Visible light emission from surface of nickel bombarded by slow Xeq+ (4 q 20) ion. Acta Physica Sinica, 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [11] Yang Zhao-Rui, Zhang Xiao-An, Xu Qiu-Mei, Yang Zhi-Hu. Visible light emission produced by interaction of highly ionized Krq+ ions with a Al surface. Acta Physica Sinica, 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [12] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [13] Zhu Xiao-Long, Ma Xin-Wen, Li Bin, Liu Hui-Ping, Chen Lan-Fang, Zhang Shao-Feng, Feng Wen-Tian, Sha Shan, Qian Dong-Bin, Cao Shi-Ping, Zhang Da-Cheng. Experimental differential investigation of state-selective single electron capture in slow He2+-He collisions. Acta Physica Sinica, 2009, 58(3): 2077-2082. doi: 10.7498/aps.58.2077
    [14] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [15] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [16] Peng Hai-Bo, Wang Tie-Shan, Han Yun-Cheng, Ding Da-Jie, Xu He, Cheng Rui, Zhao Yong-Tao, Wang Yu-Yu. Study of channeling effect by impact of highly charged ions on crystal surface of Si(110). Acta Physica Sinica, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [17] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [18] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [19] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] Wang Yu-Yu, Zhao Yong-Tao, Xiao Guo-Qing, Fang Yan, Zhang Xiao-An, Wang Tie-Shan, Wang Shi-Wei, Peng Hai-Bo. Electron emission induced by the interaction of highly charged ions 207Pbq+(24≤q≤36) with solid surface of Si(110). Acta Physica Sinica, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
Metrics
  • Abstract views:  427
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2024
  • Accepted Date:  10 October 2024
  • Available Online:  13 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回