Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface

Zhang Bing-Zhang Song Zhang-Yong Zhang Ming-Wu Liu Xuan Qian Cheng Fang Xing Shao Cao-Jie Wang Wei Liu Jun-Liang Zhu Zhi-Chao Sun Liang-Ting Yu De-Yang

Citation:

Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface

Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang
PDF
HTML
Get Citation
  • The study of the interaction between highly charged ions and solid surfaces not only has great significance for basic scientific research such as atomic physics, astrophysics, and high energy density physics but also has promising application prospects in biomedicine, nanotechnology, surface analysis, and microelectronics. In this paper, the intermediate Rydberg states formed during highly charged ${\rm{O}}^{7+}$ and ${\rm{N}}^{6+}$ ions incident on Al surface are studied theoretically by using the two-state vector model. Both the probability of electron capture into different Rydberg states $\left(n_{A}=2-7\right)$ and the most probable neutralization distances are given. The calculation shows that the larger principal quantum number $n_{A}$ is relevant to smaller probability. Therefore, the X-rays emitted by ${\rm{O}}^{7+}$ and ${\rm{N}}^{6+}$ ions incident on the Al surface come mainly from the de-excitation of the smaller $n_{A}$ to the ground state. In order to confirm the calculations, we measured the X-ray emission spectra of ${\rm{O}}^{7+}$ and ${\rm{N}}^{6+}$ ions in collisions with the Al surface in the energy range of 3–20 keV/q. The experiments were performed at an ECR ion source located in Institute of modern physics. We also calculated the transition energies (np–1s) from different high Rydberg states to the ground state by using the FAC code. The center of the measured K X-ray peak is close to the calculated transition energy from the principal quantum number n = 2 to n = 1, it is consistent with our results obtained by the two-state vector model as well. In addition, we found the experimental K X-ray yield for ${\rm{O}}^{7+}$ ions incidence at lower energy collisions is almost the same with ${\rm{N}}^{6+}$ ions, but larger at higher energy collisions. When the ion incident kinetic energy is low, the X-ray emission is mainly owing to the decay of “above the surface” hollow atoms. Because of the small difference in the critical distances for the capture of electrons by ${\rm{O}}^{7+}$ and ${\rm{N}}^{6+}$ to form hollow atoms, the X-ray yields produced in both cases are almost the same at low energy collisions. In contrast, as increasing the incident energy, the ions have a long-range in the target, so the contribution from the decay of “above the surface” and “below the surface” hollow atoms need to be considered at the same time.
      Corresponding author: Song Zhang-Yong, songzhy@impcas.ac.cn ; Zhu Zhi-Chao, 22770662@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675279, 12075291).
    [1]

    Arnau A, Aumayr F, Echenique P M, Grether M, Heiland W, Limburg J, Morgenstern R, Roncin P, Schippers S, Schuch R, Stolterfoht N, Varga P, Zouros T J M, Winter H 1997 Surf. Sci. Rep. 27 113Google Scholar

    [2]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23Google Scholar

    [3]

    Winter H, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 3 2

    [4]

    Song Z Y, Yang Z H, Xiao G Q, Xu Q M, Chen J, Yang B, Yang Z R 2011 Eur. Phys. J. D 64 197Google Scholar

    [5]

    Zhao Y T, Xiao G Q, Zhang X A, Yang Z H, Zhan W L, Chen X M, Li F L 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 245 72Google Scholar

    [6]

    Zhao Y T, Xiao G Q, Zhang X A, Yang Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258 121Google Scholar

    [7]

    张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 物理学报 69 213301Google Scholar

    Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar

    [8]

    Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72 132Google Scholar

    [9]

    张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青 2012 物理学报 61 113401Google Scholar

    Zhang X A, Li Y Z, Zhao Y T, Liang C H, Cheng R, Zhou X M, Wang X, Lei Y, Sun Y B, Xu G, Li J Y, Xiao G Q 2012 Acta Phys. Sin. 61 113401Google Scholar

    [10]

    Zhang H, Chen X, Yang Z, Xu J, Cui Y, Shao J, Zhang X, Zhao Y, Zhang Y, Xiao G 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1564Google Scholar

    [11]

    Nedeljković L D, Nedeljković N N, Božanić D K 2006 Phys. Rev. A 74 032901Google Scholar

    [12]

    Borisov A G, Zimny R, Teillet-Billy D, Gauyacq J P 1996 Phys. Rev. A 53 2457Google Scholar

    [13]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [14]

    Iwai Y, Murakoshi D, Kanai Y, Oyama H, Ando K, Masuda H, Nishio K, Nakao M, Tamamura T, Komaki K, Yamazaki Y 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 193 504Google Scholar

    [15]

    Kanai Y, Nakai Y, Iwai Y, Ikeda T, Hoshino M, Nishio K, Masuda H, Yamazaki Y 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 103Google Scholar

    [16]

    Tökési K, Wirtz L, Lemell C, Burgdörfer J 2000 Phys. Rev. A 61 020901Google Scholar

    [17]

    Ninomiya S, Yamazaki Y, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1997 Phys. Rev. Lett. 78 4557Google Scholar

    [18]

    Ninomiya S, Yamazaki Y, Azuma T, Komaki K, Koike F, Masuda H, Kuroki K, Sekiguchi M 1997 Phys. Scr. T73 316Google Scholar

    [19]

    Aumayr F, Kurz H, Schneider D, Briere M A, McDonald J W, Cunningham C E, Winter H 1993 Phys. Rev. Lett. 71 1943Google Scholar

    [20]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [21]

    Nedeljković N N, Majkić M D 2007 Phys. Rev. A 76 042902Google Scholar

    [22]

    Nedeljković N N, Nedeljković L D, Mirković M A 2003 Phys. Rev. A 68 012721Google Scholar

    [23]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys. Conf. Ser. 58 451Google Scholar

    [24]

    Tona M, Watanabe H, Takahashi S, Nakamura N, Yoshiyasu N, Sakurai M, Terui T, Mashiko S, Yamada C, Ohtani S 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 256 543Google Scholar

    [25]

    Heller R, Facsko S, Wilhelm R A, Moller W 2008 Phys. Rev. Lett. 101 096102Google Scholar

    [26]

    El-Said A S, Wilhelm R A, Heller R, Facsko S, Lemell C, Wachter G, Burgdorfer J, Ritter R, Aumayr F 2012 Phys. Rev. Lett. 109 117602Google Scholar

    [27]

    Nedeljković N N, Majkić M D, Božanić D K, Dojčilović R J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 125201Google Scholar

    [28]

    Nedeljković N N, Majkić M D, Galijaš S M D 2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202Google Scholar

    [29]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2021 NIST Atomic Spectra Database [EB/OL] https://physics.nist.gov/asd [2021-12-27]

    [30]

    张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋 2021 物理学报 70 193201Google Scholar

    Zhang B Z, Song Z Y, Liu X, Qian C, Fang X, Shao C J, Wang W, Liu J L, Xu J K, Feng Y, Zhu Z C, Guo Y L, Chen L, Sun L T, Yang Z H, Yu D Y 2021 Acta Phys. Sin. 70 193201Google Scholar

  • 图 1  $ {\rm{O}}^{7+} $离子俘获电子至里德伯态$v_{{\rm{A}}}(n_{{\rm{A}}}=3 ; \; l_{{\rm{A}}}= $$ 0, 1, 2, 3)$的几率, 其中$l_{{\rm{A}}}=2$$l_{{\rm{A}}}=3$的几率相等. 虚线对应点状核模型

    Figure 1.  Probability for the $ {\rm{O}}^{7+} $ ion capturing an electron into the Rydberg states $\left(n_{{\rm{A}}}=3 ;\; l_{{\rm{A}}}=0, 1, 2, 3\right)$, where the values of $l_{{\rm{A}}}=2$ and $l_{{\rm{A}}}=3$ are equal. Dashed curves correspond to the case of the pointlike core

    图 2  电子被俘获至不同里德堡态$\left(n_{{\rm{A}}} = 2 - 7\right)$的几率 (a) ${\rm{O}} ^{7 + } $离子; (b) $ {\rm{N}}^{6 + } $离子

    Figure 2.  Probability for the electron captured into the Rydberg states $ \left(n_{{\rm{A}}} = 2 - 7\right) $: (a) $ {\rm{O}}^{7 + } $ ion; (b) $ {\rm{N}}^{6 + } $ ion

    图 3  $ {\rm{O}}^{7 + } $离子入射Al表面发射的X射线谱, 其中(a)为3 keV/q, (b) 为20 keV/q. 图中箭头标示了FAC程序计算的不同里德堡态退激到基态的跃迁能

    Figure 3.  X-ray spectra induced by ${\rm{O}} ^{7 + } $ ions impact on aluminum surfaces at (a) 3 keV/q and (b) 20 keV/q collisional energy. The arrows indicate the calculated X-ray energies for different Rydberg states to the ground state by FAC code

    图 4  ${\rm{N}} ^{6 + } $离子入射Al表面发射的X射线谱, 其中(a)为3 keV/q, (b) 为20 keV/q. 图中箭头标示了FAC程序计算的不同里德堡态退激到基态的跃迁能

    Figure 4.  X-ray spectra generated by $ {\rm{N}}^{6 + } $ ions incident on aluminum surfaces at (a) 3 keV/q and (b) 20 keV/q collisional energy. The arrows indicate the calculated X-ray energies for different Rydberg states to the ground state by FAC code

    图 5  3—20 keV/q的${\rm{O}} ^{7 + } $, ${\rm{N}} ^{6 + } $离子入射Al表面的X射线产额

    Figure 5.  X-ray yield by the bombardment of $ {\rm{O}}^{7 + } $ and $ {\rm{N}}^{6 + } $ ions on aluminium surface with 3-20 keV/q incident energies.

    表 1  ${\rm{O}}^{7 + }$, ${\rm{N}}^{6 + }$离子在考虑离子极化下的能级参数$\widetilde{\gamma}_{{\rm{A}}}$ (arb. units), 及不考虑离子极化下的参数$\gamma_{{\rm{A}} 0}= $$ Z / n_{{\rm{A}}}$ (arb. units)

    Table 1.  Energy parameter $\widetilde{\gamma}_{{\rm{A}}}$ (arb. units) and $\gamma_{{\rm{A}} 0} = $$ Z / n_{\rm A}$ (arb. units) for the ions ${\rm{O}}^{7 + }$ and ${\rm{N}}^{6 + }$, separately correspond to the cases with and without polarization of the ionic core

    $n_{{\rm{A}}}$ $l_{{\rm{A}}} = 0$ $l_{{\rm{A}}} = 1$ $l_{{\rm{A}}} = 2$ $l_{{\rm{A}}} = 3$ $\gamma_{{\rm{A}} 0}$
    ${\rm{O} }^{7 + }({{Z} } = 7)$
    2 3.540 3.487 3.500
    3 2.352 2.328 2.334 2.334 2.333
    4 1.760 1.748 1.751 1.751 1.750
    5 1.399 1.400 1.401 1.400
    6 1.166 1.167 1.168 1.167
    7 1.003 1.000
    ${\rm{N} }^{6+}({{Z} }=6)$
    2 3.040 2.987 3.000
    3 2.018 1.994 2.000 2.000
    4 1.510 1.497 1.500 1.500
    5 1.207 1.195 1.200 1.200
    6 0.999 1.000
    7 0.855 0.857
    DownLoad: CSV

    表 2  TVM模型计算的${\rm{O}}^{7 + }$, ${\rm{N}}^{6 + }$离子的中和距离. 括号中的值代表点状核模型的中和距离

    Table 2.  The neutralization distances for the ${\rm{O}}^{7 + }$ and ${\rm{N}}^{6 + }$ ions calculated by TVM. Numbers in parentheses are the neutralization distances for the pointlike ionic core case

    $n_{{\rm{A}}}$ $l_{{\rm{A}}}=0$ $l_{{\rm{A}}}=1$ $l_{{\rm{A}}}=2$ $l_{{\rm{A}}}=3$
    ${\rm{O}}^{7 + }$
    2 1.27 (1.28) 1.28 (1.28) (1.28) (1.28)
    3 2.68 (2.74) 2.75 (2.74) 2.69 (2.74) 2.69 (2.74)
    4 4.60 (4.62) 4.63 (4.62) 4.62 (4.62) 4.62 (4.62)
    5 (7.01) 7.02 (7.01) 7.01 (7.01) 7.01 (7.01)
    6 (9.87) 9.88 (9.87) 9.87 (9.87) 9.81 (9.87)
    7 (13.30) 13.21(13.30) (13.30) (13.30)
    ${\rm{N}}^{6+}$
    2 1.45 (1.51) 1.52 (1.51) (1.51) (1.51)
    3 3.15 (3.18) 3.18 (3.18) 3.18 (3.18) (3.18)
    4 5.36 (5.39) 5.45 (5.39) 5.39 (5.39) (5.39)
    5 8.13 (8.22) 8.25 (8.22) 8.22 (8.22) (8.22)
    6 (11.65) 11.66 (11.65) (11.65) (11.65)
    7 (16.29) 16.37 (16.29) (16.29) (16.29)
    DownLoad: CSV

    表 3  基于FAC程序计算的不同高里德堡态退激到基态的跃迁能(np −1s)

    Table 3.  Calculated transition energy for different Rydberg states to the ground state using FAC code (np −1s)

    O ion $2 {\rm{p}}-1 {\rm{s}}$ $3{\rm{ p}}-1{\rm{ s}}$ $4 {\rm{p}}-1{\rm{ s}}$ $5 {\rm{p}}-1{\rm{ s}}$ $6 {\rm{p}}-1 {\rm{s}}$ $7 {\rm{p}}-1 {\rm{s}}$
    Energy/eV 526.4 541.5 543.5 543.9 544.1 544.2
    N ion $2 {\rm{p}}-1 {\rm{s}}$ $3 {\rm{p}}-1 {\rm{s}}$ $4 {\rm{p}}-1 {\rm{s}}$ $5 {\rm{p}}-1{\rm{ s}}$ $6 {\rm{p}}-1 {\rm{s}}$ $7 {\rm{p}}-1 {\rm{s}}$
    Energy/eV 395.8 407.8 409.7 410.1 410.3 410.4
    DownLoad: CSV
  • [1]

    Arnau A, Aumayr F, Echenique P M, Grether M, Heiland W, Limburg J, Morgenstern R, Roncin P, Schippers S, Schuch R, Stolterfoht N, Varga P, Zouros T J M, Winter H 1997 Surf. Sci. Rep. 27 113Google Scholar

    [2]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23Google Scholar

    [3]

    Winter H, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 3 2

    [4]

    Song Z Y, Yang Z H, Xiao G Q, Xu Q M, Chen J, Yang B, Yang Z R 2011 Eur. Phys. J. D 64 197Google Scholar

    [5]

    Zhao Y T, Xiao G Q, Zhang X A, Yang Z H, Zhan W L, Chen X M, Li F L 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 245 72Google Scholar

    [6]

    Zhao Y T, Xiao G Q, Zhang X A, Yang Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258 121Google Scholar

    [7]

    张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 物理学报 69 213301Google Scholar

    Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar

    [8]

    Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72 132Google Scholar

    [9]

    张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青 2012 物理学报 61 113401Google Scholar

    Zhang X A, Li Y Z, Zhao Y T, Liang C H, Cheng R, Zhou X M, Wang X, Lei Y, Sun Y B, Xu G, Li J Y, Xiao G Q 2012 Acta Phys. Sin. 61 113401Google Scholar

    [10]

    Zhang H, Chen X, Yang Z, Xu J, Cui Y, Shao J, Zhang X, Zhao Y, Zhang Y, Xiao G 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1564Google Scholar

    [11]

    Nedeljković L D, Nedeljković N N, Božanić D K 2006 Phys. Rev. A 74 032901Google Scholar

    [12]

    Borisov A G, Zimny R, Teillet-Billy D, Gauyacq J P 1996 Phys. Rev. A 53 2457Google Scholar

    [13]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [14]

    Iwai Y, Murakoshi D, Kanai Y, Oyama H, Ando K, Masuda H, Nishio K, Nakao M, Tamamura T, Komaki K, Yamazaki Y 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 193 504Google Scholar

    [15]

    Kanai Y, Nakai Y, Iwai Y, Ikeda T, Hoshino M, Nishio K, Masuda H, Yamazaki Y 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 103Google Scholar

    [16]

    Tökési K, Wirtz L, Lemell C, Burgdörfer J 2000 Phys. Rev. A 61 020901Google Scholar

    [17]

    Ninomiya S, Yamazaki Y, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1997 Phys. Rev. Lett. 78 4557Google Scholar

    [18]

    Ninomiya S, Yamazaki Y, Azuma T, Komaki K, Koike F, Masuda H, Kuroki K, Sekiguchi M 1997 Phys. Scr. T73 316Google Scholar

    [19]

    Aumayr F, Kurz H, Schneider D, Briere M A, McDonald J W, Cunningham C E, Winter H 1993 Phys. Rev. Lett. 71 1943Google Scholar

    [20]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [21]

    Nedeljković N N, Majkić M D 2007 Phys. Rev. A 76 042902Google Scholar

    [22]

    Nedeljković N N, Nedeljković L D, Mirković M A 2003 Phys. Rev. A 68 012721Google Scholar

    [23]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys. Conf. Ser. 58 451Google Scholar

    [24]

    Tona M, Watanabe H, Takahashi S, Nakamura N, Yoshiyasu N, Sakurai M, Terui T, Mashiko S, Yamada C, Ohtani S 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 256 543Google Scholar

    [25]

    Heller R, Facsko S, Wilhelm R A, Moller W 2008 Phys. Rev. Lett. 101 096102Google Scholar

    [26]

    El-Said A S, Wilhelm R A, Heller R, Facsko S, Lemell C, Wachter G, Burgdorfer J, Ritter R, Aumayr F 2012 Phys. Rev. Lett. 109 117602Google Scholar

    [27]

    Nedeljković N N, Majkić M D, Božanić D K, Dojčilović R J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 125201Google Scholar

    [28]

    Nedeljković N N, Majkić M D, Galijaš S M D 2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202Google Scholar

    [29]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2021 NIST Atomic Spectra Database [EB/OL] https://physics.nist.gov/asd [2021-12-27]

    [30]

    张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋 2021 物理学报 70 193201Google Scholar

    Zhang B Z, Song Z Y, Liu X, Qian C, Fang X, Shao C J, Wang W, Liu J L, Xu J K, Feng Y, Zhu Z C, Guo Y L, Chen L, Sun L T, Yang Z H, Yu D Y 2021 Acta Phys. Sin. 70 193201Google Scholar

  • [1] Huang Hou-Ke, Wen Wei-Qiang, Huang Zhong-Kui, Wang Shu-Xing, Tang Mei-Tang, Li Jie, Mao Li-Jun, Yuan Yang, Wan Meng-Yu, Liu Chang, Wang Han-Bin, Zhou Xiao-Peng, Zhao Dong-Mei, Yan Kai-Min, Zhou Yun-Bin, Yuan You-Jin, Yang Jian-Cheng, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen. Precision spectroscopy of dielectronic recombination experiments for highly charged ions at large facility HIAF: a simulation study. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241589
    [2] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [3] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He. Acta Physica Sinica, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [4] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [5] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [6] Zhang Bing-Zhang,  Song Zhang-Yong,  Zhang Ming-Wu,  Liu Xuan,  Qian Cheng,  Fang Xin,  Shao Chao-Jie,  Wang Wei,  Liu Jun-Liang,  Zhu Zhi-Chao,  Sun Liang-Ting,  Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [7] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [8] Li Xiao-Kang, Jia Feng-Dong, Yu Fang-Chen, Li Ming-Yang, Xue Ping, Xu Xiang-Yuan, Zhong Zhi-Ping. The study on high n Rydberg state of La II. Acta Physica Sinica, 2019, 68(4): 043201. doi: 10.7498/aps.68.20181980
    [9] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [10] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Zhou Xian-Ming, Xiao Guo-Qing. Study of X-ray spectrum emitted due to the impact of 129Xeq+ on different ion's charge on Au. Acta Physica Sinica, 2015, 64(5): 053201. doi: 10.7498/aps.64.053201
    [11] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin. Measurement of the argon-gas-induced broadening and shifting of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [12] Sun Jiang, Liu Peng, Sun Juan, Su Hong-Xin, Wang Ying. Study of the satellite line in measurement of the argon -gas-induced broadening of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [13] Zou Xian-Rong, Shao Jian-Xiong, Chen Xi-Meng, Cui Ying. Kβ/Kα ratios and energies of the K-shell X-ray of Ar17+ ion in the interaction with metals. Acta Physica Sinica, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [14] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [15] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [16] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [17] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [18] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [19] Sun Jiang, Zuo Zhan-Chun, Guo Qing-Lin, Wang Ying-Long, Huai Su-Fang, Wang Ying, Fu Pan-Ming. Observation of Rydberg series of neutral barium by two-photon resonent nondegenerate four-wave mixing. Acta Physica Sinica, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [20] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
Metrics
  • Abstract views:  3927
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2021
  • Accepted Date:  10 March 2022
  • Available Online:  20 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回