Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

On the schemes of cavity photon elimination in circuit-quantum electrodynamics systems

Meng Jian-Yu Wang Pei-Yue Feng Wei Yang Guo-Jian Li Xin-Qi

Citation:

On the schemes of cavity photon elimination in circuit-quantum electrodynamics systems

Meng Jian-Yu, Wang Pei-Yue, Feng Wei, Yang Guo-Jian, Li Xin-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The solid-state superconducting circuit-QED (quantum electrodynamics) system is a promising candidate for quantum computing and quantum information processing, which serves also as an ideal platform for quantum measurement and quantum control studies. In this context, a large number of cavity photons may be involved in the quantum dynamics and will degrade the simulation efficiency. To avoid this difficulty, it is helpful to eliminate the degrees of freedom of the cavity photons, and obtain an effective master-equation description which contains only the qubit states. In this work, we examine two such schemes, the adiabatic elimination (AE) and the more recently proposed polaron transformation (PT) approaches, by comparing their results with exact numerical simulations. We find that in the absence of qubit-flip, which is a specific quantum nondemolition (QND) measurement, the PT scheme is superior to the AE method. Actually, in this case the PT scheme catches the measurement dynamics exactly. However, in the presence of qubit-flip such as for qubit oscillation measurement, the PT scheme is no longer better than the AE approach. We conclude that both schemes, in the weak measurement regime, can work almost equally well. This corresponds to strong cavity damping or weak coupling between the qubit and cavity photons. Out of this regime, unfortunately, one has to include the cavity photons into numerical simulations and more advanced methods/techniques are waiting for their exploration in this field.
    • Funds: This work was supported by the National Natural Science Foundation of China (Grant Nos. 101202101, 10874176), and the National Basic Research Program of China (Grant Nos. 2011CB808502, 2012CB932704).
    [1]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [2]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [3]

    Haroche S, Kleppner D 1989 Phys. Today 24

    [4]

    Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 445 515

    [5]

    Houck A A, Schuster D I, Gambetta J, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 328

    [6]

    Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M, Cleland A N 2008 Nature 454 310

    [7]

    Leek P J, Fink J M, Blais A, Bianchetti R, Gppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 318 1889

    [8]

    Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Y A, Nakamura Y, Tsai J S 2007 Nature 449 588

    [9]

    Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602

    [10]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [11]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [12]

    Sarovar M, Goan H S, Spiller T P, Milburn G J 2005 Phys. Rev. A 72 062327

    [13]

    Liu Z, Kuang L, Hu K, Xu L, Wei S, Guo L, Li X Q 2010 Phys. Rev. A 82 032335

    [14]

    Feng W, Wang P, Ding X, Xu L, Li X Q 2011 Phys. Rev. A 83 042313

    [15]

    Wiseman H M, Milburn G J 1993 Phys. Rev. A 47 642

    [16]

    Gambetta J, Blais A, Boissonneault M, Houck A A, Schuster D I, Girvin S M 2008 Phys. Rev. A 77 012112

    [17]

    Hutchison C L, Gambetta J M, Blais A, Wilhelm F K 2009 Can. J. Phys. 87 225

    [18]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [19]

    Tavis M, Cummings F W 1968 Phys. Rev. 170 379

    [20]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [21]

    Korotkov A N, Averin D V 2001 Phys. Rev. B 64 165310

    [22]

    Gurvitz S A, Berman G P 2005 Phys. Rev. B 72 073303

    [23]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [24]

    Wiseman H M, Milburn G J 2010 Quantum Measurement and Control (Cambridge: Cambridge University Press)

    [25]

    Ruskov R, Korotkov A N 2002 Phys. Rev. B 66 041401(R)

    [26]

    Jin J S, Li X Q, Yan Y J 2006 Phys. Rev. B 73 233302

  • [1]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [2]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [3]

    Haroche S, Kleppner D 1989 Phys. Today 24

    [4]

    Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 445 515

    [5]

    Houck A A, Schuster D I, Gambetta J, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 328

    [6]

    Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M, Cleland A N 2008 Nature 454 310

    [7]

    Leek P J, Fink J M, Blais A, Bianchetti R, Gppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 318 1889

    [8]

    Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Y A, Nakamura Y, Tsai J S 2007 Nature 449 588

    [9]

    Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602

    [10]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [11]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [12]

    Sarovar M, Goan H S, Spiller T P, Milburn G J 2005 Phys. Rev. A 72 062327

    [13]

    Liu Z, Kuang L, Hu K, Xu L, Wei S, Guo L, Li X Q 2010 Phys. Rev. A 82 032335

    [14]

    Feng W, Wang P, Ding X, Xu L, Li X Q 2011 Phys. Rev. A 83 042313

    [15]

    Wiseman H M, Milburn G J 1993 Phys. Rev. A 47 642

    [16]

    Gambetta J, Blais A, Boissonneault M, Houck A A, Schuster D I, Girvin S M 2008 Phys. Rev. A 77 012112

    [17]

    Hutchison C L, Gambetta J M, Blais A, Wilhelm F K 2009 Can. J. Phys. 87 225

    [18]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [19]

    Tavis M, Cummings F W 1968 Phys. Rev. 170 379

    [20]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [21]

    Korotkov A N, Averin D V 2001 Phys. Rev. B 64 165310

    [22]

    Gurvitz S A, Berman G P 2005 Phys. Rev. B 72 073303

    [23]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [24]

    Wiseman H M, Milburn G J 2010 Quantum Measurement and Control (Cambridge: Cambridge University Press)

    [25]

    Ruskov R, Korotkov A N 2002 Phys. Rev. B 66 041401(R)

    [26]

    Jin J S, Li X Q, Yan Y J 2006 Phys. Rev. B 73 233302

  • [1] Yuan Jia-Wang, Chen Li, Zhang Yun-Bo. Adiabatic elimination theory of multi-level system in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [2] Wang Xue-Mei, Zhang An-Qi, Zhao Sheng-Mei. Implementation of controlled phase gate based on superadiabatic shortcut in circuit quantum electrodynamics. Acta Physica Sinica, 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [3] Guan Yong, Liu Dan-Dan, Wang Xin-Liang, Zhang Hui, Shi Jun-Ru, Bai Yang, Ruan Jun, Zhang Shou-Gang. Investigation of cold atom collision frequency shift measured by rapid adiabatic passage in cesium fountain clock. Acta Physica Sinica, 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [4] Lu Wen, Yan Wei, Wang Rui, Wang Ying-Qiang. Eliminating the influence of attitude on brightness temperatures measurement for polarimetric microwave radiometer. Acta Physica Sinica, 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [5] Meng Jian-Yu, Wang Pei-Yue, Feng Wei, Yang Guo-Jian, Li Xin-Qi. On the scheme of cavity photon elimination in multi-qubit circuit-quantum electrodynamics system. Acta Physica Sinica, 2012, 61(24): 240305. doi: 10.7498/aps.61.240305
    [6] Luo Zhi-Hua, Yu Chao-Fan, Lin Qia-Wu. Nonclassical ground state for Fröhlich palaron. Acta Physica Sinica, 2011, 60(5): 057104. doi: 10.7498/aps.60.057104
    [7] Bai Yun, Liu Xin-Yuan, He Ding-Wu, Ru Hong-Yu, Qi Liang, Ji Min-Biao, Zhao Wei, Xie Fei-Xiang, Nie Rui-Juan, Ma Ping, Dai Yuan-Dong, Wang Fu-Ren. Singular value decomposition and adaptive noise reduction for SQUID-based magnetocardiograms. Acta Physica Sinica, 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
    [8] Gao Kun, Liu Xiao-Jing, Liu De-Sheng, Xie Shi-Jie. Inversed polarization of the single excited state of polaron. Acta Physica Sinica, 2005, 54(11): 5324-5328. doi: 10.7498/aps.54.5324
    [9] Wang Lu-Xia, Zhang Da-Cheng, Liu De-Sheng, Han Sheng-Hao, Xie Shi-Jie. Dynamics of polarons and bipolarons in nondegenerate polymers. Acta Physica Sinica, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [10] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. POLARONS AND BIPOLARONS IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
    [11] . Acta Physica Sinica, 2000, 49(2): 226-230. doi: 10.7498/aps.49.226
    [12] Xu Zong-Rong, Tian Zhi-Yue. . Acta Physica Sinica, 1995, 44(9): 1467-1470. doi: 10.7498/aps.44.1467
    [13] WANG KE-LIN, CHEN QING-HU, WAN SHAO-LONG. A NEW METHOD OF VARIATIONAL CALCULATION FOR POLARON. Acta Physica Sinica, 1994, 43(3): 433-437. doi: 10.7498/aps.43.433
    [14] LI JING-DE, LU XIA-LIAN, LEI DE-MING. POLARONS IN HIGH INSULATORS. Acta Physica Sinica, 1992, 41(11): 1898-1905. doi: 10.7498/aps.41.1898
    [15] LIN REN-MING, ZHANG LIN. THE MULTI-PHOTON QUANTUM STATISTICAL THEORY OF DRIVEN OPTICAL SYSTEMS (Ⅲ)——IMPROVEMENT OF THE METHOD OF ADIABATIC ELIMINATION. Acta Physica Sinica, 1989, 38(4): 548-558. doi: 10.7498/aps.38.548
    [16] XING DING-YU, GONG CHANG-DE. POLARONS IN A 1:3 PEIERLS SYSTEM. Acta Physica Sinica, 1984, 33(8): 1198-1201. doi: 10.7498/aps.33.1198
    [17] CHEN KAI-MAO, QIN GUO-GANG, WANG ZHONG-AN, JIN SI-XUAN. A METHOD FOR MEASURING CARRIER CAPTURE CROSS SECTIONS OF DEEP CENTERS WITH ELIMINATING THE INFLUENCE OF INHOMOGENEOUS CARRIER DISTRIBUTION. Acta Physica Sinica, 1984, 33(4): 486-495. doi: 10.7498/aps.33.486
    [18] PAN JIN-SHENG. THE SURFACE OR INTERFACE WEAK COUPLING POLARON IN POLAR CRYSTALS. Acta Physica Sinica, 1982, 31(3): 335-347. doi: 10.7498/aps.31.335
    [19] GU SHI-WEI. THE TEMPERATURE DEPENDENCE OF THE POLARON EFFECTIVE MASS. Acta Physica Sinica, 1980, 29(5): 609-617. doi: 10.7498/aps.29.609
    [20] ВЛИЯНИЕ ДИСТОРСИЙ И ЩУМОВ НА ИЗМЕРЕНИЕ МНОГОКРАТНО КУЛОНОВСКОГО РАССЕЯНИЯ В ЯДЕРНОЙ ЭМУЛЬСИИ И ЕГО УСТРАНЕНИЕ. Acta Physica Sinica, 1964, 20(1): 83-90. doi: 10.7498/aps.20.83
Metrics
  • Abstract views:  8019
  • PDF Downloads:  580
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2011
  • Accepted Date:  13 March 2012
  • Published Online:  05 September 2012

/

返回文章
返回