-
The transition dipole of the hyperfine-rotation spectrum of J = 1←0 within the vibronic ground (X1Σ, v = 0) state of BrF molecule is derived, and thus, the transition selection rules are summarized as follows: ΔJ = ±1; ΔF1 = 0, ±1 and ΔF = 0, ±1, and those of ΔF1 = ΔF are intense while those of ΔF1 ≠ ΔF are weak. Some spectral lines result from both the electric dipole transition and nuclear magnetic dipole transition due to perturbations, however, the magnetic dipole transition only contributes about one-billionth in the spectral intensity. The spectral linewidth is determined to be about 18 kHz by calculating the spectral transition probability. The obtained spectral linewidth and relative intensities are consistent with the experimental results. Additionally, the hyperfine-rotation spectral positions are determined by diagonalizing the Hamiltonian matrix in the basis of |JI1F1I2F
$\rangle $ , which is also in good agreement with the experiments within 10–8 (one-fiftieth of the spectral line width). Hence, the microwave hyperfine-rotation spectrum is simulated. In addition, we find that the nuclear spin-spin interaction not only slightly shifts the hyperfine-rotation spectral positions but also changes the sequence of the spectra. As to those unavailable constants of molecules, the fairly precise molecular constants can be achieved by quantum chemical calculation, say, by employing MOLPRO program, and then the simulated spectra can guide the spectral assignment. Besides the guidance of spectral assignment, our results are also helpful for other relevant applications such as in absolute single quantum state preparation.-
Keywords:
- hyperfine structure /
- magnetic transition dipole /
- hyperfine-rotation spectrum /
- BrF
[1] Bernath P F 2020 ????? (Oxford: Oxford University Press)
[2] Kennedy C J, Oelker E, Robinson J M, Bothwell T, D. Kedar, Milner W R, Marti G E, Derevianko A, Ye J 2020 Phys. Rev. Lett. 125 201302Google Scholar
[3] Changala P B, Weichman M L, Lee K F, Fermann M E, Ye J 2019 Science 363 49Google Scholar
[4] Denis M, Pi A, Timmermans R, Eliav E, Borschevsky A 2019 Phys. Rev. A 99 042512Google Scholar
[5] Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar
[6] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar
[7] Bouchendira R, Cladé P, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar
[8] Webb J K, Flambaum V V, Churchill C W, Drinkwater M J, Barrow J D 1999 Phys. Rev. Lett. 82 884Google Scholar
[9] Liang Q, Chan Y C, Changala P B, Nesbitt D J, Ye J, Toscano J 2021 Proc. Natl. Acad. Sci. 118 e2105063118Google Scholar
[10] Kolkowitz S P I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043Google Scholar
[11] Valtolina G, Matsuda K, Tobias W G, Li J R, Marco L D, Ye J 2020 Nature 588 239Google Scholar
[12] William D, Phillips 1998 Rev. Mod. Phys. 70 721Google Scholar
[13] Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar
[14] Barry F J, McCarron J D, Norrgard B E, Steinecker H M, DeMille D 2014 Nature 512 286Google Scholar
[15] Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2019 Science 363 853Google Scholar
[16] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar
[17] Mccarron D J, Norrgard E B, Steinecker M H, Demille D 2015 New J. Phys. 17 035014Google Scholar
[18] Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar
[19] Ni K K, Ospelkaus S, Miranda M, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar
[20] Peter, Molony K, Philip, Gregory D, Zhonghua, Ji, Bo, Lu, Michael, Köppinger P 2014 Phys. Rev. Lett. 113 255301Google Scholar
[21] Takekoshi T, Reichsoellner L, Schindewolf A, Hutson J M, Sueur C, Dulieu O, Ferlaino F, Grimm R, Naegerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar
[22] Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar
[23] Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar
[24] Matsuda K, Marco L D, Li J R, Tobias W G, Ye J 2020 Science 370 1324Google Scholar
[25] Gu Y, Chen K, Huang Y, Yang X 2019 Chin. Phys. B 28 43702Google Scholar
[26] Huang Y, Shao X, Yang X 2016 J. Phys. B 49 135101Google Scholar
[27] Chen K, Huang Y, Yang X 2017 Chin. J Chem. Phys. 30 418Google Scholar
[28] Smith D F, Tidwell M, Williams D V P 1950 Phys. Rev. 77 420Google Scholar
[29] Calder V, Hansen D, Hoffman D, Ruedenberg K 1972 J Chem. Phys. 49 5399
[30] Nair K, Hoeft J, Tiemann E 1979 J Mol. Spectrosc. 78 506Google Scholar
[31] Clyne M A A, Curran A H, Coxon J A 1976 J Mol. Spectrosc. 63 43Google Scholar
[32] Aldegunde J, Hutson J M 2008 Phys. Rev. A 78 033434Google Scholar
[33] Wang D, Shao X, Huang Y, Li C, Yang X 2021 Chin. Phys. B 30 113301Google Scholar
[34] Yang Q S, Li S C, Yu Y, Gao T 2018 J Phys. Chem. A 122 3021Google Scholar
[35] Brown J M, Carrington A 2003 Cambridge University Press
[36] Arima A, Horie H, Sano M 1957 Prog. Theor. Exp. Phys. 17 567Google Scholar
[37] Müller H S, Gerry M C 1995 J. Chem. Phys. 103 577Google Scholar
[38] Shao X, Gong T, Wu L, Yang X 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1005Google Scholar
[39] Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B, Wang D, Miranda M D, Bohn J, Ye J, Jin D 2010 Phys. Rev. Lett. 104 030402Google Scholar
-
图 2 BrF振动基态(X1Σ, v = 0)下J = 1←0转动超精细跃迁光谱模拟(下图), 红线代表79BrF, 黑线代表81BrF. 两同位素丰度相差很小, 使得它们的光谱强度几乎相等. 超高分辨的光谱模拟见上图(79BrF)和中图(81BrF), 其中, 谱线1.5, 1–1.5, 2, 1.5, 2–1.5, 1和2.5, 2–1.5, 2的相对强度极小, 导致它们无法观测到(蓝圈部分)
Figure 2. Simulated hyperfine-rotation spectra (lower) of the J = 1←0 transition within the vibronic ground state (X1Σ, v = 0) of BrF of its two isotopes, 79BrF in Red and 81BrF in black. Their spectral intensities are almost the same accordingly due to their nearly equal natural abundance of the two isotopes. Details of the spectra of 79BrF (upper) and 81BrF (medium) of the unresolved spectra (lower) are plotted as well. Intensities of the spectra F1, F = 1.5, 1–1.5, 2, 1.5, 2–1.5, 1 and 2.5, 2–1.5, 2 are too small to observe, as shown in the blue circles.
表 1 BrF(X1Σ, v = 0)分子常数
Table 1. Molecular parameters of BrF(X1Σ, v = 0)
79BrF 81BrF B/MHz 10628.46302 10577.63957 D/kHz 12.028 11.956 eqQ/MHz 1086.89197 907.97681 C1/kHz 89.051 95.818 C2/kHz –24.17 –24.54 C3/kHz –7.15 –7.71 C4/kHz 4.86 5.24 表 2 BrF分子振动基态(X1Σ, v = 0)中J = 1←0跃迁的转动超精细光谱计算值(单位: MHz), 同时列出了其与实验值的偏差和归一化光谱强度
Table 2. Calculated hyperfine-rotation spectra (in MHz) of the J = 1←0 transition in the vibronic ground state (X1Σ, v = 0) of BrF molecule. Deviations (in MHz) from the experimental spectra and the normalized intensity are listed as well.
$F_1',F'\text{-}F''_1,F'' $ 79BrF 81BrF 强度
(归一化)计算值 误差a 计算值 误差a 0.5, 0–1.5, 1 20986.0744 0.0003 20928.7933 0 0.1428 0.5, 1–1.5, 1 20986.1035 –0.0011 20928.8236 0.0002 0.0917 1.5, 1–1.5, 1 21475.0918 0 21337.3854 0.0001 0.3571 1.5, 2–1.5, 1 21475.0730 21337.3660 0.0713 2.5, 2–1.5, 1 21203.1734 0.0001 21110.3358 0 0.6427 0.5, 1–1.5, 2 20986.0937 0 20928.8131 –0.0002 0.3570 1.5, 1–1.5, 2 21475.0820 21337.3749 0.0714 1.5, 2–1.5, 2 21475.0632 0 21337.3556 –0.0001 0.6427 2.5, 2–1.5, 2 21203.1636 21110.3253 0.0713 2.5, 3–1.5, 2 21203.1484 0 21110.3109 0 1 σb 0.0004 0.0001 a 计算值减去参考文献中的实验值[37], 误差缺失表示谱线强度太弱而实验无法观测到. b σ为计算总体方差. 表 3 BrF振动基态下的转动超精细跃迁偶极矩
Table 3. Hyperfine-rotation transition dipoles of BrF within its vibronic ground state.
$ (J' = 1)F_1', F' $ $(J'' = 0) F_1'', F''$ 0.5, 0 0.5, 1 1.5, 1 1.5, 2 2.5, 2 2.5, 3 1.5, 1 0.2247 0.1124 0.5616 0.1123 1.0110 0 1.5, 2 0 0.5617 0.1123 1.0110 0.1122 1.5728 -
[1] Bernath P F 2020 ????? (Oxford: Oxford University Press)
[2] Kennedy C J, Oelker E, Robinson J M, Bothwell T, D. Kedar, Milner W R, Marti G E, Derevianko A, Ye J 2020 Phys. Rev. Lett. 125 201302Google Scholar
[3] Changala P B, Weichman M L, Lee K F, Fermann M E, Ye J 2019 Science 363 49Google Scholar
[4] Denis M, Pi A, Timmermans R, Eliav E, Borschevsky A 2019 Phys. Rev. A 99 042512Google Scholar
[5] Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar
[6] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar
[7] Bouchendira R, Cladé P, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar
[8] Webb J K, Flambaum V V, Churchill C W, Drinkwater M J, Barrow J D 1999 Phys. Rev. Lett. 82 884Google Scholar
[9] Liang Q, Chan Y C, Changala P B, Nesbitt D J, Ye J, Toscano J 2021 Proc. Natl. Acad. Sci. 118 e2105063118Google Scholar
[10] Kolkowitz S P I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043Google Scholar
[11] Valtolina G, Matsuda K, Tobias W G, Li J R, Marco L D, Ye J 2020 Nature 588 239Google Scholar
[12] William D, Phillips 1998 Rev. Mod. Phys. 70 721Google Scholar
[13] Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar
[14] Barry F J, McCarron J D, Norrgard B E, Steinecker H M, DeMille D 2014 Nature 512 286Google Scholar
[15] Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2019 Science 363 853Google Scholar
[16] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar
[17] Mccarron D J, Norrgard E B, Steinecker M H, Demille D 2015 New J. Phys. 17 035014Google Scholar
[18] Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar
[19] Ni K K, Ospelkaus S, Miranda M, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar
[20] Peter, Molony K, Philip, Gregory D, Zhonghua, Ji, Bo, Lu, Michael, Köppinger P 2014 Phys. Rev. Lett. 113 255301Google Scholar
[21] Takekoshi T, Reichsoellner L, Schindewolf A, Hutson J M, Sueur C, Dulieu O, Ferlaino F, Grimm R, Naegerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar
[22] Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar
[23] Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar
[24] Matsuda K, Marco L D, Li J R, Tobias W G, Ye J 2020 Science 370 1324Google Scholar
[25] Gu Y, Chen K, Huang Y, Yang X 2019 Chin. Phys. B 28 43702Google Scholar
[26] Huang Y, Shao X, Yang X 2016 J. Phys. B 49 135101Google Scholar
[27] Chen K, Huang Y, Yang X 2017 Chin. J Chem. Phys. 30 418Google Scholar
[28] Smith D F, Tidwell M, Williams D V P 1950 Phys. Rev. 77 420Google Scholar
[29] Calder V, Hansen D, Hoffman D, Ruedenberg K 1972 J Chem. Phys. 49 5399
[30] Nair K, Hoeft J, Tiemann E 1979 J Mol. Spectrosc. 78 506Google Scholar
[31] Clyne M A A, Curran A H, Coxon J A 1976 J Mol. Spectrosc. 63 43Google Scholar
[32] Aldegunde J, Hutson J M 2008 Phys. Rev. A 78 033434Google Scholar
[33] Wang D, Shao X, Huang Y, Li C, Yang X 2021 Chin. Phys. B 30 113301Google Scholar
[34] Yang Q S, Li S C, Yu Y, Gao T 2018 J Phys. Chem. A 122 3021Google Scholar
[35] Brown J M, Carrington A 2003 Cambridge University Press
[36] Arima A, Horie H, Sano M 1957 Prog. Theor. Exp. Phys. 17 567Google Scholar
[37] Müller H S, Gerry M C 1995 J. Chem. Phys. 103 577Google Scholar
[38] Shao X, Gong T, Wu L, Yang X 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1005Google Scholar
[39] Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B, Wang D, Miranda M D, Bohn J, Ye J, Jin D 2010 Phys. Rev. Lett. 104 030402Google Scholar
Catalog
Metrics
- Abstract views: 3525
- PDF Downloads: 61
- Cited By: 0