Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

40Ca+ optical frequency standards with high accuracy

Guan Hua Huang Yao Li Cheng-Bin Gao Ke-Lin

Citation:

40Ca+ optical frequency standards with high accuracy

Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of the technologies in the lasers and the manipulation of cold atoms, the high precision optical frequency standards have been extensively studied and built in recent years. These high precision frequency standards may play an important role in establishing the new time reference, promoting the researches in the fundamental fields, fulfilling the national strategic needs, etc. In this paper, the research progress of high accuracy 40Ca+ optical frequency standard in Wuhan Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences is presented. A new ULE super cavity is adopted for stabilizing the frequency of 729 nm clock laser, and the stability of the laser is improved now to 2×10-15 in a duration of 1-100 s. By controlling the external fields and other environmental influences, especially suppressing the micromotion effects of the trapped ion, the uncertainty of the optical frequency standard based on a single 40Ca+ is reduced to 5.5×10-17. The stability of 5×10-17 in a duration of 20000 s is achieved via the comparison between two 40Ca+ optical frequency standards. Several precision measurement experiments are performed, based on the high precision 40Ca+ optical frequency standard. The absolute value of the clock transition frequency of the 40Ca+ optical frequency standard is measured second time, using an optical comb referenced to a hydrogen maser which is calibrated via GPS referenced to UTC (NIM)) using the precise point positioning data-processing technique. The frequency offset of UTC (NIM) relative to the SI second can be evaluated through BIPM circular-T reports, and the newly measured value of m 4s 2S1/2-3m d 2D5/2 transition is adopted by CCTF-20, thus updating the recommended value of 40Ca+ optical clock transition. Besides the absolute frequency measurement, the magic wavelengths of 40Ca+ optical clock transition are measured precisely, and this work is a milestone for establishing all-optical trapped-ion clocks. The lifetime of the m 3 d 2D3/2 and m 3 d 2D5/2 state in 40Ca+ are precisely measured, too. The work mentioned above contributes to the researches of the precision measurements based on cold atomic systems.
      Corresponding author: Gao Ke-Lin, klgao@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91336211, 11474318, 11622434, 11774388), the National Basic Research Program of China (Grants Nos. 2005CB724502, 2012CB821301), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100).
    [1]

    Bergquist J C, Jefferts S R, Wineland D J 2001 Phys. Today 54 37

    [2]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [3]

    Margolis H, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K, Gill P 2004 Science 306 1355

    [4]

    Madej A A, Dubé P, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [5]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [6]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [7]

    Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hansel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D, Laurent Ph. 2009 Phys. Rev. Lett. 102 023002

    [8]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [9]

    Takamoto M, Hong F, Higashi R, Katori H 2005 Nature 435 321

    [10]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W, Hinkley N 2008 Science 319 1805

    [11]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [12]

    McFerran J, Yi L, Mejri S, Manno S, Zhang W, Guéna J, le Coq Y, Bize S 2012 Phys. Rev. Lett. 108 183004

    [13]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [14]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [15]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [16]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photon. 11 48

    [17]

    Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, Gao K 2016 Phys. Rev. Lett. 116 013001

    [18]

    Lin Y, Wang Q, Li Y, Meng F, Lin B, Zang E, Sun Z, Fang F, Li T, Fang Z 2015 Chin. Phys. Lett. 32 090601

    [19]

    Zhang X, Zhou M, Chen N, Gao Q, Han C, Yao Y, Xu P, Li S, Xu Y, Jiang Y, Bi Z, Ma L, Xu X 2015 Laser Phys. Lett. 12 025501

    [20]

    Liu H, Zhang X, Jiang K, Wang J, Zhu Q, Xiong Z, He L, Lyu B 2017 Chin. Phys. Lett. 34 020601

    [21]

    Wang Y, Yin M, Ren J, Xu Q, Lu B, Han J, Guo Y, Chang H 2018 Chin. Phys. B 27 023701

    [22]

    Che H, Deng K, Xu Z, Yuan W, Zhang J, Lu Z 2017 Phys. Rev. A 96 013417

    [23]

    Shang J, Cui K, Cao J, Wang S, Chao S, Shu H, Huang X 2016 Chin. Phys. Lett. 33 103701

    [24]

    Zou H, Wu Y, Chen G, Shen Y, Liu Q 2015 Chin. Phys. Lett. 32 054207

    [25]

    Fu X, Fang S, Zhao R, Zhang Y, Huang J, Sun J, Xu Z, Wang Y 2018 Chin. Opt. Lett. (Accepted)

    [26]

    Shi T, Pan D, Chang P, Shang H, Chen J 2018 Rev. Sci. Instrum. 89 043102

    [27]

    Champenois C, Houssin M, Lisowski C, Knoop M, Hagel G, Vedel M, Vedel F 2004 Phys. Lett. A 331 298

    [28]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [29]

    Shu H, Guan H, Huang X, Li J, Gao K 2005 Chin. Phys. Lett. 22 1641

    [30]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [31]

    Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X, Gao K 2011 Opt. Commun. 284 217

    [32]

    Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X, Gao K 2011 Phys. Rev. A 84 053841

    [33]

    Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T, Gao K 2012 Phys. Rev. A 85 030503

    [34]

    Bian W, Huang Y, Guan H, Liu P, Ma L, Gao K 2016 Rev. Sci. Instrum. 87 063121

    [35]

    Liu P, Huang Y, Bian W, Shao H, Guan H, Tang Y, Li C, Mitroy J, Gao K 2015 Phys. Rev. Lett. 114 223001

    [36]

    Shao H, Huang Y, Guan H, Qian Y, Gao K 2016 Phys. Rev. A 94 042507

    [37]

    Guan H, Shao H, Qian Y, Huang Y, Liu P, Bian W, Li C, Sahoo B K, Gao K 2015 Phys. Rev. A 91 022511

    [38]

    Shao H, Huang Y, Guan H, Li C, Shi T, Gao K 2017 Phys. Rev. A 95 053415

    [39]

    Barton P A, Donald C J S, Lucas D M, Stevens D A, Steane A M, Stacey D N 2000 Phys. Rev. A 62 032503

    [40]

    Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Hänsel W, Schmidt-Kaler F, Blatt R 2005 Phys. Rev. A 71 032504

    [41]

    Guan H, Guo B, Huang G, Shu H, Huang X, Gao K 2007 Opt. Commun. 274 182

    [42]

    Qu W C, Huang Y, Guan H, Huang X R, Gao K L 2011 Chin. J. Lasers 38 0803008 (in Chinese) [屈万成, 黄垚, 管桦, 黄学人, 高克林 2011 中国激光 38 0803008]

    [43]

    Bureau International des Poids et Mesures (BIPM), Consultative Committee for Time and Frequency (CCTF) Report of the 20th Meeting (September 17-18, 2015) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF20.pdf

    [44]

    Tang Y, Qiao H, Shi T, Mitroy J 2013 Phys. Rev. A 87 042517

  • [1]

    Bergquist J C, Jefferts S R, Wineland D J 2001 Phys. Today 54 37

    [2]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [3]

    Margolis H, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K, Gill P 2004 Science 306 1355

    [4]

    Madej A A, Dubé P, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [5]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [6]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [7]

    Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hansel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D, Laurent Ph. 2009 Phys. Rev. Lett. 102 023002

    [8]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [9]

    Takamoto M, Hong F, Higashi R, Katori H 2005 Nature 435 321

    [10]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W, Hinkley N 2008 Science 319 1805

    [11]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [12]

    McFerran J, Yi L, Mejri S, Manno S, Zhang W, Guéna J, le Coq Y, Bize S 2012 Phys. Rev. Lett. 108 183004

    [13]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [14]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [15]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [16]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photon. 11 48

    [17]

    Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, Gao K 2016 Phys. Rev. Lett. 116 013001

    [18]

    Lin Y, Wang Q, Li Y, Meng F, Lin B, Zang E, Sun Z, Fang F, Li T, Fang Z 2015 Chin. Phys. Lett. 32 090601

    [19]

    Zhang X, Zhou M, Chen N, Gao Q, Han C, Yao Y, Xu P, Li S, Xu Y, Jiang Y, Bi Z, Ma L, Xu X 2015 Laser Phys. Lett. 12 025501

    [20]

    Liu H, Zhang X, Jiang K, Wang J, Zhu Q, Xiong Z, He L, Lyu B 2017 Chin. Phys. Lett. 34 020601

    [21]

    Wang Y, Yin M, Ren J, Xu Q, Lu B, Han J, Guo Y, Chang H 2018 Chin. Phys. B 27 023701

    [22]

    Che H, Deng K, Xu Z, Yuan W, Zhang J, Lu Z 2017 Phys. Rev. A 96 013417

    [23]

    Shang J, Cui K, Cao J, Wang S, Chao S, Shu H, Huang X 2016 Chin. Phys. Lett. 33 103701

    [24]

    Zou H, Wu Y, Chen G, Shen Y, Liu Q 2015 Chin. Phys. Lett. 32 054207

    [25]

    Fu X, Fang S, Zhao R, Zhang Y, Huang J, Sun J, Xu Z, Wang Y 2018 Chin. Opt. Lett. (Accepted)

    [26]

    Shi T, Pan D, Chang P, Shang H, Chen J 2018 Rev. Sci. Instrum. 89 043102

    [27]

    Champenois C, Houssin M, Lisowski C, Knoop M, Hagel G, Vedel M, Vedel F 2004 Phys. Lett. A 331 298

    [28]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [29]

    Shu H, Guan H, Huang X, Li J, Gao K 2005 Chin. Phys. Lett. 22 1641

    [30]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [31]

    Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X, Gao K 2011 Opt. Commun. 284 217

    [32]

    Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X, Gao K 2011 Phys. Rev. A 84 053841

    [33]

    Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T, Gao K 2012 Phys. Rev. A 85 030503

    [34]

    Bian W, Huang Y, Guan H, Liu P, Ma L, Gao K 2016 Rev. Sci. Instrum. 87 063121

    [35]

    Liu P, Huang Y, Bian W, Shao H, Guan H, Tang Y, Li C, Mitroy J, Gao K 2015 Phys. Rev. Lett. 114 223001

    [36]

    Shao H, Huang Y, Guan H, Qian Y, Gao K 2016 Phys. Rev. A 94 042507

    [37]

    Guan H, Shao H, Qian Y, Huang Y, Liu P, Bian W, Li C, Sahoo B K, Gao K 2015 Phys. Rev. A 91 022511

    [38]

    Shao H, Huang Y, Guan H, Li C, Shi T, Gao K 2017 Phys. Rev. A 95 053415

    [39]

    Barton P A, Donald C J S, Lucas D M, Stevens D A, Steane A M, Stacey D N 2000 Phys. Rev. A 62 032503

    [40]

    Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Hänsel W, Schmidt-Kaler F, Blatt R 2005 Phys. Rev. A 71 032504

    [41]

    Guan H, Guo B, Huang G, Shu H, Huang X, Gao K 2007 Opt. Commun. 274 182

    [42]

    Qu W C, Huang Y, Guan H, Huang X R, Gao K L 2011 Chin. J. Lasers 38 0803008 (in Chinese) [屈万成, 黄垚, 管桦, 黄学人, 高克林 2011 中国激光 38 0803008]

    [43]

    Bureau International des Poids et Mesures (BIPM), Consultative Committee for Time and Frequency (CCTF) Report of the 20th Meeting (September 17-18, 2015) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF20.pdf

    [44]

    Tang Y, Qiao H, Shi T, Mitroy J 2013 Phys. Rev. A 87 042517

  • [1] WU Lielie, REN Yichong, Xue Fei. Ferromagnetic torsion pendulum oscillator based magnetic field measurement and its applications. Acta Physica Sinica, 2025, 74(3): 030701. doi: 10.7498/aps.74.20241538
    [2] Tu Bing-Sheng. Precise measurements of electron g factors in bound states of few-electron ions. Acta Physica Sinica, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [3] Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Research progress of lock-in amplifiers. Acta Physica Sinica, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [4] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [5] Zhang Hong-Shuo, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin. Simulation of Coulomb crystal structure and motion trajectory of calcium ions in linear ion trap. Acta Physica Sinica, 2023, 72(1): 013701. doi: 10.7498/aps.72.20221674
    [6] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [7] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [8] Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe. Accurate measurement of optical fiber time delay based on frequency domain reflectometry. Acta Physica Sinica, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [9] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [10] Geng Jun-Xian, Li Shao-Qiang, Wang Shi-Qi, Huang Chun, Lü Yun-Jie, Hu Rui, Qu Jun-Le, Liu Li-Wei. Stimulating Ca2+ photoactivation of nerve cells by near-infrared light. Acta Physica Sinica, 2020, 69(15): 158701. doi: 10.7498/aps.69.20200489
    [11] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [12] Tan Wen-Hai, Wang Jian-Bo, Shao Cheng-Gang, Tu Liang-Cheng, Yang Shan-Qing, Luo Peng-Shun, Luo Jun. Recent progress in testing Newtonian inverse square law at short range. Acta Physica Sinica, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [13] Liu Jian-Ping, Wu Jun-Fei, Li Qing, Xue Chao, Mao De-Kai, Yang Shan-Qing, Shao Cheng-Gang, Tu Liang-Cheng, Hu Zhong-Kun, Luo Jun. Progress on the precision measurement of the Newtonian gravitational constant G. Acta Physica Sinica, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [14] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [15] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [16] Mu Xiu-Li, Li Chuan-Liang, Deng Lun-Hua, Wang Hai-Ling. Spectra of I2+ for possible measurement of α and μ constant. Acta Physica Sinica, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [17] Sun Heng-Xin, Liu Kui, Zhang Jun-Xiang, Gao Jiang-Rui. Quantum precision measurement based on squeezed light. Acta Physica Sinica, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [18] Wang Jin-Tao, Liu Zi-Yong. Method of accurately measuring silicon sphere density difference based on hydrostatic suspension principls. Acta Physica Sinica, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [19] Gao Feng, Chang Hong, Wang Xin-Liang, Tian Xiao, Zhang Shou-Gang. The theoretical and experimental investigation of repumping laser impact on cooling and trapping of strontium atoms. Acta Physica Sinica, 2011, 60(5): 050601. doi: 10.7498/aps.60.050601
    [20] Yang Zhi-Hu, Zhang Xiao-An, Zhao Yong-Tao, Yin Wei-Wei, Li Ning-Xi. Precision measurement of excited spectra of oxygen ions. Acta Physica Sinica, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
Metrics
  • Abstract views:  7815
  • PDF Downloads:  282
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2018
  • Accepted Date:  05 June 2018
  • Published Online:  20 August 2019

/

返回文章
返回