Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adaptive stochastic resonance system in terahertz radar signal detection

Wang Shan Wang Fu-Zhong

Citation:

Adaptive stochastic resonance system in terahertz radar signal detection

Wang Shan, Wang Fu-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Terahertz radar research has attracted widely attention of researchers due to its advantages such as short wave length, wide bandwidth, no blind spot, low power, and low intercept rate. It is generally considered that the echo signal of terahertz radar system is a signal with noise. Therefore, it is necessary to reduce the noise in the process of the frequency spectrum analysis of different-frequency signals. The fast Fourier transform (FFT) and the filtering method are commonly used in radar signal processing. The FFT method has lower ability to estimate the frequency of signal due to the interference noise. The filtering method detects the signal from the angle of noise elimination, but at the same time, it weakens useful characteristics, blurs position information about the signal, and affects detection capability of terahertz radar system. Aiming at the problem above, a method of detecting terahertz radar signals based on adaptive stochastic resonance (SR) system is proposed in this paper due to a phenomenon that the noise can be suppressed while amplifying the weak signal by transferring the noise energy after going through the SR system. With the different-frequency signal processing method of the twice sampling, the adaptive SR system and the scale recovery, the optimal parameters can be obtained automatically and the ranging calculation can be completed. Comparing with the FFT method, the mean output signal-to-noise ratio (SNR) gain through the SR system is 9.6843 dB at different measuring distances. When the measuring distance is 1000 mm, the initial spectrum value increases from 110.1 to 7172, which is 64.1 times higher than original value. The initial SNR of the whole system is improved from -11.94 to -0.179 dB, the gain is 11.761 dB. Comparing with the filtering method, the largest SNR gain is 6.485 dB when the measuring distance is 1000 mm, which is increased by 70.56%. When the input noise intensity is between 0.5 V and 1 V, the output SNR of the adaptive SR system is higher than that of the traditional filter system, but the gain is small and the maximum SNR gain is 2.148 dB. When the noise intensity of the system is between 1 V and 5 V, the SNR of the adaptive SR system is obviously higher than that of the filter system, and the largest SNR gain is 14.018 dB when the noise intensity D=5 V. The SNR curve of the adaptive SR system tends to be smoother and the curvature is 0.507, while the SNR curvature of the filtering model is 3.765, which is reduced by 86.5%. The method proposed in this paper not only solves the problem of noise coverage in the different-frequency signal, but also uses the characteristic that the noise energy can be transferred to the signal, to improve the output SNR of terahertz radar system, which is beneficial to further signal processing. Experimental results demonstrate that the ranging capability of the THz radar system is greatly improved, which has high application value and wide prospect in practical engineering research.
      Corresponding author: Wang Fu-Zhong, wangfuzhong@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271011) and the Program for Innovative Research Team in University of Tianjin, China (Grant No. TD13-5035).
    [1]

    Robinson L C 1958 Australian Defence Scientific Service 1 57

    [2]

    Withayachumnankul W, Png G M, Yin X X 2007 Proc. IEEE 95 1528

    [3]

    Appleby R, Wallace H B 2007 IEEE Trans. Antennas and Propag. 55 2944

    [4]

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702 (in Chinese) [张真真, 黎华, 曹俊诚 2018 物理学报 67 090702]

    [5]

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702 (in Chinese) [柴璐, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702]

    [6]

    Hou M S, Zou P, Zhu Y 2009 Electron. Meas. Technol. 32 9 (in Chinese) [候民胜, 邹平, 朱莹 2009 电子测量技术 32 9]

    [7]

    Zhang C, Shi Z F, Guo W 2016 Trans. Microsyst. Technol. 35 141 (in Chinese) [张晨, 史再峰, 郭炜 2016 传感器与微系统 35 141]

    [8]

    Chen L, Bi D P, Zhang W 2015 Electron. Opt. Control 22 107 (in Chinese) [陈璐, 毕大平, 张伟 2015 电光与控制 22 107]

    [9]

    Wang H, Li G X 2010 Electron. Optics Control 17 33 (in Chinese) [王虹, 李国兴 2010 电光与控制 17 33]

    [10]

    Benzi R, Sutera A, Vulpiana A 1981 J. Phys. A 14 453

    [11]

    Leng Y G, Lai Z H 2014 Acta Phys. Sin. 63 020502 (in Chinese) [冷永刚, 赖志慧 2014 物理学报 63 020502]

    [12]

    Yang D X, Hu Z, Yang Y M 2012 Acta Phys. Sin. 61 08050 (in Chinese) [杨定新, 胡政, 杨拥民 2012 物理学报 61 08050]

    [13]

    Li J 2011 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [李晋 2011 硕士学位论文 (成都: 电子科技大学)]

    [14]

    Shen C 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [申辰 2013 硕士学位论文 (成都: 电子科技大学)]

    [15]

    Liu J J, Leng Y G, Lai Z H, Tan D 2016 Acta Phys. Sin. 65 220501 (in Chinese) [刘进军, 冷永刚, 赖志慧, 谭丹 2016 物理学报 65 220501]

    [16]

    Zou H L, Zheng L Q, Liu C J 2013 Imag. Signal Process. (CISP) 6th International Congress on 2 1090

    [17]

    Xia J Z, Liu Y H, Ma Z P 2012 J. Vib. Shock 31 132 (in Chinese) [夏均忠, 刘远宏, 马宗坡 2012 振动与冲击 31 132]

    [18]

    Zhang G L, Wang F Z 2009 J. Comput. Theor. Nanosci. 6 676

    [19]

    Wang S, Wang F Z, Wang S, Li G J 2018 Chin. J. Phys. 56 3

    [20]

    Gao Y X, Wang F Z 2013 J. Comput. Theor. Nanosci. 0 1

    [21]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [22]

    Rekoff Jr M G 1985 IEEE Trans. Syst. 18 244

    [23]

    Leng Y G, Wang T Y, Qin X D, Li R X, Guo Y 2004 Acta Phys. Sin. 53 717 (in Chinese) [冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭焱 2004 物理学报 53 717]

    [24]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [25]

    Qin G R, Gong D C, Hu G, Wen X D 1992 Acta Phys. Sin. 41 3 (in Chinese) [秦光戎, 龚德纯, 胡岗, 温孝东 1992 物理学报 41 3]

  • [1]

    Robinson L C 1958 Australian Defence Scientific Service 1 57

    [2]

    Withayachumnankul W, Png G M, Yin X X 2007 Proc. IEEE 95 1528

    [3]

    Appleby R, Wallace H B 2007 IEEE Trans. Antennas and Propag. 55 2944

    [4]

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702 (in Chinese) [张真真, 黎华, 曹俊诚 2018 物理学报 67 090702]

    [5]

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702 (in Chinese) [柴璐, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702]

    [6]

    Hou M S, Zou P, Zhu Y 2009 Electron. Meas. Technol. 32 9 (in Chinese) [候民胜, 邹平, 朱莹 2009 电子测量技术 32 9]

    [7]

    Zhang C, Shi Z F, Guo W 2016 Trans. Microsyst. Technol. 35 141 (in Chinese) [张晨, 史再峰, 郭炜 2016 传感器与微系统 35 141]

    [8]

    Chen L, Bi D P, Zhang W 2015 Electron. Opt. Control 22 107 (in Chinese) [陈璐, 毕大平, 张伟 2015 电光与控制 22 107]

    [9]

    Wang H, Li G X 2010 Electron. Optics Control 17 33 (in Chinese) [王虹, 李国兴 2010 电光与控制 17 33]

    [10]

    Benzi R, Sutera A, Vulpiana A 1981 J. Phys. A 14 453

    [11]

    Leng Y G, Lai Z H 2014 Acta Phys. Sin. 63 020502 (in Chinese) [冷永刚, 赖志慧 2014 物理学报 63 020502]

    [12]

    Yang D X, Hu Z, Yang Y M 2012 Acta Phys. Sin. 61 08050 (in Chinese) [杨定新, 胡政, 杨拥民 2012 物理学报 61 08050]

    [13]

    Li J 2011 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [李晋 2011 硕士学位论文 (成都: 电子科技大学)]

    [14]

    Shen C 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [申辰 2013 硕士学位论文 (成都: 电子科技大学)]

    [15]

    Liu J J, Leng Y G, Lai Z H, Tan D 2016 Acta Phys. Sin. 65 220501 (in Chinese) [刘进军, 冷永刚, 赖志慧, 谭丹 2016 物理学报 65 220501]

    [16]

    Zou H L, Zheng L Q, Liu C J 2013 Imag. Signal Process. (CISP) 6th International Congress on 2 1090

    [17]

    Xia J Z, Liu Y H, Ma Z P 2012 J. Vib. Shock 31 132 (in Chinese) [夏均忠, 刘远宏, 马宗坡 2012 振动与冲击 31 132]

    [18]

    Zhang G L, Wang F Z 2009 J. Comput. Theor. Nanosci. 6 676

    [19]

    Wang S, Wang F Z, Wang S, Li G J 2018 Chin. J. Phys. 56 3

    [20]

    Gao Y X, Wang F Z 2013 J. Comput. Theor. Nanosci. 0 1

    [21]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [22]

    Rekoff Jr M G 1985 IEEE Trans. Syst. 18 244

    [23]

    Leng Y G, Wang T Y, Qin X D, Li R X, Guo Y 2004 Acta Phys. Sin. 53 717 (in Chinese) [冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭焱 2004 物理学报 53 717]

    [24]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [25]

    Qin G R, Gong D C, Hu G, Wen X D 1992 Acta Phys. Sin. 41 3 (in Chinese) [秦光戎, 龚德纯, 胡岗, 温孝东 1992 物理学报 41 3]

  • [1] Huo Yuan-Lian, Tuo Li-Hua, Qi Yong-Feng, Ding Rui-Bo. Kernel least logarithm absolute difference algorithm based on P-norm. Acta Physica Sinica, 2022, 71(4): 048401. doi: 10.7498/aps.71.20211124
    [2] Gong Tao, Yang Jian-Hua, Shan Zhen, Wang Zhi-Le, Liu Hou-Guang. Optimal resonance response of nonlinear system excited by nonlinear frequency modulation signal. Acta Physica Sinica, 2022, 71(5): 050503. doi: 10.7498/aps.71.20211959
    [3] Li Jing-He, He Zhan-Xiang, Yang Jun, Meng Shu-Jun, Li Wen-Jie, Liao Xiao-Qian. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain. Acta Physica Sinica, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [4] Wang Meng-Jiao, Zhou Ze-Quan, Li Zhi-Jun, Zeng Yi-Cheng. An adaptive denoising algorithm for chaotic signals based on collaborative filtering. Acta Physica Sinica, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [5] Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min. Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform. Acta Physica Sinica, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [6] Chai Lu, Niu Yue, Li Yan-Feng, Hu Ming-Lie, Wang Qing-Yue. Recent progress of tunable terahertz sources based on difference frequency generation. Acta Physica Sinica, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [7] Wang Ying, Hou Feng-Zhen, Dai Jia-Fei, Liu Xin-Feng, Li Jin, Wang Jun. Transfer entropy analysis of electroencephalogram based on adaptive template method. Acta Physica Sinica, 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [8] Wang Meng-Jiao, Wu Zhong-Tang, Feng Jiu-Chao. A parameter optimization nonlinear adaptive denoising algorithm for chaotic signals. Acta Physica Sinica, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [9] Zhang Lu, Xie Tian-Ting, Luo Mao-Kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta Physica Sinica, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [10] Zhu Hang, Zhang Shu-Ning, Zhao Hui-Chang. Single-channel source separation of radar fuze mixed signal using advanced adaptive decomposition. Acta Physica Sinica, 2014, 63(5): 058401. doi: 10.7498/aps.63.058401
    [11] Li Yi-Bo, Zhang Bo-Lin, Liu Zi-Xin, Zhang Zhen-Yu. Adaptive stochastic resonance method based on quantum particle swarm optimization. Acta Physica Sinica, 2014, 63(16): 160504. doi: 10.7498/aps.63.160504
    [12] Peng Hao, Zhong Su-Chuan, Tu Zhe, Ma Hong. Stochastic resonance of over-damped bistable system driven by chirp signal and Gaussian white noise. Acta Physica Sinica, 2013, 62(8): 080501. doi: 10.7498/aps.62.080501
    [13] Yang Ding-Xin, Hu Zheng, Yang Yong-Min. The analysis of stochastic resonance of periodic signal with large parameters. Acta Physica Sinica, 2012, 61(8): 080501. doi: 10.7498/aps.61.080501
    [14] Zhong Kai, Yao Jian-Quan, Xu De-Gang, Zhang Hui-Yun, Wang Peng. Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta Physica Sinica, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [15] Zhang Cun-Xi, Wang Rui, Kong Ling-Min. Photon-mediated electron transport through a quantum well in an intense terahertz field with spin-orbit coupling. Acta Physica Sinica, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [16] Lin Min, Fang Li-Min, Zhu Ruo-Gu. The dual-resonance characteristic of coupled bistable system affected by two-frequency signal. Acta Physica Sinica, 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [17] Zhang Liang-Ying, Jin Guo-Xiang, Cao Li. Stochastic resonance of frequency modulated signals in a linear model of single-mode laser. Acta Physica Sinica, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [18] Research of adaptive stochastic resonance based on approximate entropy. Acta Physica Sinica, 2007, 56(12): 6803-6808. doi: 10.7498/aps.56.6803
    [19] Li Guo-Hui, Xu De-Ming, Zhou Shi-Ping. Chaos synchronization by using random parametric adaptive control method. Acta Physica Sinica, 2004, 53(2): 379-382. doi: 10.7498/aps.53.379
    [20] GAO JIN-FENG, MA XI-KUI, LUO XIAN-JUE. AN ADAPTIVE APPROACH FOR REALIZING ANY CONTINUOUS TIME SCALAR(HYPER)CHAOTIC SIGN AL SYNCHRONIZATION CONTROL. Acta Physica Sinica, 2000, 49(7): 1235-1240. doi: 10.7498/aps.49.1235
Metrics
  • Abstract views:  7287
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2017
  • Accepted Date:  24 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回