Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering

Dong Xu Huang Yong-Sheng Tang Guang-Yi Chen Shan-Hong Si Mei-Yu Zhang Jian-Yong

Citation:

Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering

Dong Xu, Huang Yong-Sheng, Tang Guang-Yi, Chen Shan-Hong, Si Mei-Yu, Zhang Jian-Yong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The accurate calibration of the beam energy of the circular electron-positron collider (CEPC) is performed to accurately measure the mass width of Higgs particle and the mass of W/Z boson, thus providing the basic experimental basis for the accurate test of the standard model. Based on this, the error control of beam energy is required to be at a level of 10–5. Compton backscattering method is suitable for high precision calibration of beam energy in the Hundred GeV high energy electron collider. In this work, the CEPC beam energy is predicted to reach a theoretical accuracy of about 3 MeV by using the accurate measurement of the scattered photon energy after microwave electron Compton backscattering. Firstly, TM01 mode microwave transmission in circular waveguide is selected according to the design requirements, and the electromagnetic field distribution and Poynting vector under this condition are solved. According to the photon distribution and transmission in the waveguide, the design idea is proposed to simplify the complexity of calculation, and the parameters conforming to the design requirements are solved by combining the simultaneous equations of the high purity germanium detector sensitivity and the background of synchrotron radiation. Using the optimal set of waveguide inner diameter, microwave wavelength and electron incident angle data, the derivative of the differential scattering cross section with respect to energy and the collision brightness are obtained when the microwave power is 100 W. The scattered photon density of 15 MeV energy is further obtained, and the signal-to-noise ratio is analyzed according to the photon density of synchrotron radiation under this energy. The feasibility of the scheme is demonstrated theoretically and the technical difficulties and problems to be further studied are discussed.
      Corresponding author: Huang Yong-Sheng, huangys82@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11655003), the Innovation Project of IHEP, China (Grant Nos. 542017IHEPZZBS11820, 542018IHEPZZBS12427), the CAS Center for Excellence in Particle Physics (CCEPP), China, and IHEP Innovation, China (Grant No. Y4545170Y2)
    [1]

    Tanabashi M, Hagiwara K, Hikasa K, et al. 2018 Phys. Rev. D 98 030001

    [2]

    Ahmad ML A, DanieleA, et al. 2015 CEPC-SppC Preliminary Conceptual Design Report (Vol. Volume I: Physics and Detector) I 17

    [3]

    Achasov M N, Zhang JY, Muchnoi N Y 2017 Nucl. Part. Phys. Proc. 287 19

    [4]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [5]

    Verlinde E 1996 European School Of High-Energy Physics, Proceedings 96 1

    [6]

    Milburn R H 1963 Phys. Rev. Lett. 10 75Google Scholar

    [7]

    Arutyunian F R, Tumanian V A 1963 Phys. Lett. 4 176Google Scholar

    [8]

    Sandorfi A M, LeVine M J, Thorn C E, Giordano G, Matone G 1983 IEEE Trans. Nucl. Sci. 30 3083Google Scholar

    [9]

    Schoenlein R W, Leemans W P 1996 Science 274 236Google Scholar

    [10]

    Pogorelsky I V 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 411 172Google Scholar

    [11]

    Zhang J Y, Cai X, Mo X H, Fu C D, Tang G Y, Achasov M N, Muchnoi N Y, Nikolaev I B, Harris F A 2019 Nucl. Phys. B 939 391Google Scholar

    [12]

    Xiao-Hu M O 2014 Chin. Phys. C 38 106203Google Scholar

    [13]

    Zhang J Y, Fu C D, Mo X H, Zhang Z L, Li D W, Wang B Y 2011 Chin. Phys. C 35 660Google Scholar

    [14]

    Tang G Y, Chen S H, Chen Y, Duan Z, Ruan M Q, An G P, Huang Y S, Lou X C, Zhang J Y, Lan X F, Zhang C L 2020 Rev. Sci. Instrum. 91 033109Google Scholar

    [15]

    郭硕鸿 2008 电动力学 (北京: 高等教育出版社)第1−286页

    Guo S H 2008 Electrodynamics (Beijing: Higher Education Press) pp1−286(in Chinese)

    [16]

    赵凯华 1984 大学物理 1 1

    Zhao K H 1984 College Physics 1 1

    [17]

    Zhang J Y, Cai X, Mo X H, Guo D Z, Wang J L, Liu B Q, Achasov M N, Krasnov A A, Muchnoi N Y, Pyata E E, Mamoshkina E V, Harris F A 2016 Chin. Phys. C 40 076001Google Scholar

    [18]

    Shuiting X 2018 Research On Compton Scattering between Photon and High Energy Electron (Vol. I) (Wuhan: Wuhan University) pp1−13

    [19]

    Mobilio S, Boscherini F, Meneghini C 2015 Synchrotron Radiation Basics, Methods and Applications (Berlin Heidelberg: Springer-Verlag) pp1−799

    [20]

    White S M, Burkhardt H, Puzo P 2010 Université Paris-Sud: CERN CERN-THESIS-2010-139 154

    [21]

    Nickolai Muchnoi N S U a N, IYF 2018 arXiv: 1803.09595 v1 [hep-ph

    [22]

    Suzuki T https://inspirehep.net/literature/111239[2021-7-5]

    [23]

    Si M Y, Huang Y S 2021 Rev. Sci. Instrum.

  • 图 1  圆形波导及坐标系

    Figure 1.  Circular waveguide and coordinate system

    图 2  波导中坡印廷矢量变化情况 (a)各分量沿ρ方向变化情况; (b) 各分量沿z方向变化情况; (c)坡印廷矢量z分量在空间中的变化情况; (d) 坡印廷矢量ρ分量在空间中的变化情况

    Figure 2.  Poynting vector variation in the waveguide: (a) The variations of each Poynting vector’s components along the ρ axis; (b) the variations of each Poynting vector’s components along the z axis; (c)variations of the z component of Poynting vector in space; (d) variations of the ρ component of Poynting vector in space.

    图 3  微波法设计图

    Figure 3.  Design drawings for microwave measurement method.

    图 4  单模传输波长-内径解

    Figure 4.  Solution of wavelength and inner diameter for single mode transmission.

    图 5  散射光子不同能量对应的dσ/dω

    Figure 5.  Different energies of scattered photons corresponding to the dσ/dω.

    图 6  电子束团、微波统一坐标系

    Figure 6.  Unified coordinate system for electron beam cluster and microwave.

    表 1  CEPC同步辐射参数值

    Table 1.  Parameters of CEPC synchrotron radiation.

    参数符号单位
    束流能量E120GeV
    束流电流I17.4mA
    转弯半径ρ10900m
    单位长度功率P435W/m
    临界能量Ec351.6keV
    弯转角θ2.844mrad
    张角φ4.258Μ.25
    DownLoad: CSV

    表 2  单模传输时微波-电子系统各参数值

    Table 2.  Parameters of microwave-electronic system in single mode transmission.

    a/mλ/mvgcosψ/cosθTz/mTt/S
    6.35 × 10–31.39 × 10–25.45 × 10–1c5.45 × 10–11.28 × 10–27.80 × 10–11
    5.5 × 10–31.30 × 10–24.46 × 10–1c4.46 × 10–11.46 × 10–21.09 × 10–10
    4.76 × 10–31.18 × 10–23.13 × 10–1c3.13 × 10–11.89 × 10–22.01 × 10–10
    4.17 × 10–31.07 × 10–21.88 × 10–1c1.88 × 10–12.85 × 10–25.05 × 10–10
    3.57 × 10–39.32 × 10–23.54 × 10–1c3.54 × 10–11.32 × 10–21.24 × 10–8
    3.18 × 10–38.27 × 10–28.12 × 10–1c8.12 × 10–15.09 × 10–22.09 × 10–9
    2.78 × 10–37.11 × 10–22.11 × 10–1c2.11 × 10–11.69 × 10–22.67 × 10–10
    2.39 × 10–35.84 × 10–23.51 × 10–1c3.51 × 10–18.32 × 10–37.91 × 10–11
    2.18 × 10–35.16 × 10–34.26 × 10–1c4.26 × 10–16.06 × 10–34.74 × 10–11
    DownLoad: CSV
  • [1]

    Tanabashi M, Hagiwara K, Hikasa K, et al. 2018 Phys. Rev. D 98 030001

    [2]

    Ahmad ML A, DanieleA, et al. 2015 CEPC-SppC Preliminary Conceptual Design Report (Vol. Volume I: Physics and Detector) I 17

    [3]

    Achasov M N, Zhang JY, Muchnoi N Y 2017 Nucl. Part. Phys. Proc. 287 19

    [4]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [5]

    Verlinde E 1996 European School Of High-Energy Physics, Proceedings 96 1

    [6]

    Milburn R H 1963 Phys. Rev. Lett. 10 75Google Scholar

    [7]

    Arutyunian F R, Tumanian V A 1963 Phys. Lett. 4 176Google Scholar

    [8]

    Sandorfi A M, LeVine M J, Thorn C E, Giordano G, Matone G 1983 IEEE Trans. Nucl. Sci. 30 3083Google Scholar

    [9]

    Schoenlein R W, Leemans W P 1996 Science 274 236Google Scholar

    [10]

    Pogorelsky I V 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 411 172Google Scholar

    [11]

    Zhang J Y, Cai X, Mo X H, Fu C D, Tang G Y, Achasov M N, Muchnoi N Y, Nikolaev I B, Harris F A 2019 Nucl. Phys. B 939 391Google Scholar

    [12]

    Xiao-Hu M O 2014 Chin. Phys. C 38 106203Google Scholar

    [13]

    Zhang J Y, Fu C D, Mo X H, Zhang Z L, Li D W, Wang B Y 2011 Chin. Phys. C 35 660Google Scholar

    [14]

    Tang G Y, Chen S H, Chen Y, Duan Z, Ruan M Q, An G P, Huang Y S, Lou X C, Zhang J Y, Lan X F, Zhang C L 2020 Rev. Sci. Instrum. 91 033109Google Scholar

    [15]

    郭硕鸿 2008 电动力学 (北京: 高等教育出版社)第1−286页

    Guo S H 2008 Electrodynamics (Beijing: Higher Education Press) pp1−286(in Chinese)

    [16]

    赵凯华 1984 大学物理 1 1

    Zhao K H 1984 College Physics 1 1

    [17]

    Zhang J Y, Cai X, Mo X H, Guo D Z, Wang J L, Liu B Q, Achasov M N, Krasnov A A, Muchnoi N Y, Pyata E E, Mamoshkina E V, Harris F A 2016 Chin. Phys. C 40 076001Google Scholar

    [18]

    Shuiting X 2018 Research On Compton Scattering between Photon and High Energy Electron (Vol. I) (Wuhan: Wuhan University) pp1−13

    [19]

    Mobilio S, Boscherini F, Meneghini C 2015 Synchrotron Radiation Basics, Methods and Applications (Berlin Heidelberg: Springer-Verlag) pp1−799

    [20]

    White S M, Burkhardt H, Puzo P 2010 Université Paris-Sud: CERN CERN-THESIS-2010-139 154

    [21]

    Nickolai Muchnoi N S U a N, IYF 2018 arXiv: 1803.09595 v1 [hep-ph

    [22]

    Suzuki T https://inspirehep.net/literature/111239[2021-7-5]

    [23]

    Si M Y, Huang Y S 2021 Rev. Sci. Instrum.

  • [1] Li Chuan-Ke, Lin Nan-Sheng, Zhou Xian-Xian, Jiang Miao, Li Ying-Jun. Theoretical study of double oscillating fields induced electron-positron pairs creation process. Acta Physica Sinica, 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] Ye Quan-Xing, He Guang-Zhao, Wang Qian. Bottominium-like states in e+e annihilation. Acta Physica Sinica, 2023, 72(20): 201401. doi: 10.7498/aps.72.20230908
    [3] Luo Hui-Yi, Jiang Miao, Xu Miao-Hua, Li Ying-Jun. Electron-position pair creation under combined oscillation fields with different frequencies. Acta Physica Sinica, 2023, 72(2): 021201. doi: 10.7498/aps.72.20221660
    [4] Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng. Time of flight detector for charged particle identification based on circular electron-positron collider. Acta Physica Sinica, 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [5] Xie Bai-Song, Li Lie-Juan, Melike Mohamedsedik, Wang Li. Enhancement effect of frequency chirp on vacuum electron-positron pair production in strong field. Acta Physica Sinica, 2022, 71(13): 131201. doi: 10.7498/aps.71.20220148
    [6] Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing. Review on laser-driven high-energy polarized electron and positron beams and γ-rays. Acta Physica Sinica, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [7] Qu Kui, Zhang Rong-Fu, Xiao Peng-Cheng. Real-time detection algorithm of object motion state based on frequency modulated continuous wave radar. Acta Physica Sinica, 2021, 70(19): 198402. doi: 10.7498/aps.70.20210205
    [8] Li Ang, Yu Jin-Qing, Chen Yu-Qing, Yan Xue-Qing. Numerical method of electron-positron pairs generation in photon-photon collider. Acta Physica Sinica, 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [9] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [10] Zhang Hua, Chen Shao-Ping, Long Yang, Fan Wen-Hao, Wang Wen-Xian, Meng Qing-Sen. Thermoelectric transport mechanism of Mg2Si0.4Sn0.6-yBiy prepared by low-temperature microwave reaction. Acta Physica Sinica, 2015, 64(24): 247302. doi: 10.7498/aps.64.247302
    [11] Gu Yu-Fei, Yan Bin, Li Lei, Wei Feng, Han Yu, Chen Jian. Image reconstruction based on total variation minimization and alternating direction method for Compton scatter tomography. Acta Physica Sinica, 2014, 63(1): 018701. doi: 10.7498/aps.63.018701
    [12] He Jing, Miao Qiang, Wu De-Wei. Microwave and light wave radar cross section similitude with unequal electrical length. Acta Physica Sinica, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [13] Wang Feng, Jia Guo-Zhu, Liu Li, Liu Feng-Hai, Liang Wen-Hai. Temperature dependent dielectric of aqueous NaCl solution at microwave frequency. Acta Physica Sinica, 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [14] Yang Jing, Liu Guo-Bin, Gu Si-Hong. Experimentally studying the scheme on exciting coherent population trapping resonances with lin//lin configuration. Acta Physica Sinica, 2012, 61(4): 043202. doi: 10.7498/aps.61.043202
    [15] Ding Shuai, Wang Bing-Zhong, Ge Guang-Ding, Wang Duo, Zhao De-Shuang. Realization of microwave wave signal time reversal based on time lens theory. Acta Physica Sinica, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [16] Zheng Hong, Yang Cheng-Tao. Magnetoelectric film under interaction of microwave. Acta Physica Sinica, 2010, 59(7): 5055-5060. doi: 10.7498/aps.59.5055
    [17] Ge Yu-Cheng. Physical properties of laser-electron Compton scattering. Acta Physica Sinica, 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [18] . Acta Physica Sinica, 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
    [19] . Acta Physica Sinica, 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
    [20] HSU YUNG-CHANG, CHENG LIN-SHENG. COINCIDENCES CAUSED BY COMPTON BACKSCATTERING OF GAMMA-RAYS. Acta Physica Sinica, 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
Metrics
  • Abstract views:  5750
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2020
  • Accepted Date:  25 January 2021
  • Available Online:  26 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回