-
According to Debye relaxation, the polarization of electric dipole can be accomplished in 10-10 s under the action of an alternating electromagnetic filed with a frequency of 2.45 GHz, so it is feasible to obtain nano powder by carrying out solid reaction in microwave at low temperature in a short time. In this work, the syntheses of Mg2Si0.4Sn0.6-yBiy (0 ≤ y ≤ 0.03) solid solution thermoelectric materials are successfully achieved by microwave-assisted solid state reaction at low temperature with MgH2 serving as one reactant instead of Mg, and their transportation mechanisms are studied based on the SPB (single parabolic band) model as well. The results indicate that the volatilization and oxidation of Mg can be suppressed effectively in this process. Fine stoichiometric product can be achieved with nano-lamellar structure with an interlayer spacing of about 100 nm by carrying out the reaction between MgH2 and Si, Sn in microwave at 400℃ in 15 min. The introduction of Bi dopant can increase carrier concentration and lattice distortion. With the cooperation between the nano lamellar structure and lattice distortion, the phone is scattered so effectively that the sample owns a lowest thermal conductivity, κmin of 1.36 W·m-1·K-1 at 550 K based on the fact that the phonon scattering is dominant in the heat transfer process. The calculated results show that the theoretical κmin is 0.93 W·m-1·K-1, which is lower than 1.36 W·m-1·K-1. Therefore, by further adjusting the process parameters and increasing the effective doping rate of Bi and the density of the lattice defects, it is expected to obtain lower thermal conductivity. The band convergence is also verified by increasing the density-of-state effective mass. The apparent increase in m* is due to a gradual increase in carrier concentration with increasing temperature. Despite the agreement between the data and the model, the irregular behavior between m* and temperature is a very strong indication and the electric transmission performance of the sample is likely to be influenced by the structure of the multi band structure. Owing possibly to the low reaction temperature, there are Bi precipitates at the grain boundary. In addition to the phonon scattering and the alloy scattering, the Bi segregation and the scattering of carrier by nano-lamellar structure make the carrier mobility of the sample slightly lower. The lower effective doping rate and complex band structure make the carrier concentration and density-of-state effective mass low coupled with the low carrier mobility, which leads to low material factor β with a ZT of 0.66 at 600 K consequently.
-
Keywords:
- microwave /
- Mg2Si1-xSnx /
- single parabolic band model /
- thermoelectric transportation mechanism
[1] Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Yu, Vedernikov M V 2006 Phys. Rev. B 74 045207
[2] Culp S R, Poon S J, Hickman N, Tritt T M, Blumm J 2006 Appl. Phys. Lett. 88 042106
[3] Kumar P, Kashyap S C, Sharma V K, Cupta H C 2015 Chin. Phys. B 24 098101
[4] Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202
[5] Zhang Y C, He J Z, Xiao Y L, Liang H N 2014 Mod. Phys. Lett. 28 1450018
[6] Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 物理学报 63 057201]
[7] Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X F, Zhang Q J, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893
[8] Zhang X, Liu H, Lu Q, Zhang J X, Zhang F P 2013 Appl. Phys. Lett. 103 063901
[9] Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B, Tritt T M 2008 Appl. Phys. Lett. 93 102109
[10] Liu X H, Zhu T J, Wang H, Hu L P, Xie H H, Jiang G Y, Snyder G J, Zhao X B 2013 Adv. Energy Mater. 3 1238
[11] Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333
[12] Yi T H, Chen S P, Li S, Yang H, Bux S, Bian Z X, Katcho N A, Shakouri A, Mingo N, Fleurial J P, Browning N D, Kauzlarich S M 2012 J. Mater. Chem. 47 24805
[13] Chen S P, Zhang X, Fan W H, Yi T H, Quach D V, Bux S, Meng Q S, Kauzlarich S M, Munir Z A 2015 J. Alloys Compd. 625 251
[14] Berthebaud D, Gascoin F 2013 J. Solid State Chem. 202 61
[15] Du Z L, Zhu T J, Chen Y, He J, Gao H L, Jiang G Y, Tritt T M, Zhao X B 2012 J. Mater. Chem. 22 6838
[16] Liu W, Tang X F, Li H, Yin K, Sharp J, Zhou X Y, Uher C 2012 J. Mater. Chem. 22 13653
[17] Xu H J, Shi J Y, Ruan Y Z 2001 Material Science Foundation (Beijing: Beijing University of Technology Press) p281 (in Chinese) [徐恒军, 石巨岩, 阮玉忠 2001 材料科学基础(北京: 北京工业出版社)第281页]
[18] Gao P, Lu X, Berkun I, Schmidt R D, Hogan T P 2014 Appl. Phys. Lett. 105 202104
[19] May A F, Snyder G J 2012 Materials, Preparation, and Characterization in Thermoelectrics (Boca Raton: CRC Press) pp11.1-11.17
[20] Bux S K, Yeung M T, Toberer E S, Snyder G J, Kaner R B, Fleurial J P 2011 J. Mater. Chem. 21 12259
[21] Blunt R F, Frederikse H P R, Hosler W R 1955 Phys. Rev. 100 663
[22] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 336
[23] Yan J K 2009 Ph. D. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [严继康 2009 博士学位论文 (昆明: 昆明理工大学)]
[24] Seo J W, Kim C M, Park K 2015 Powder Technol. 278 11
[25] Chen X, Shi L, Zhou J, Goodenough J B 2015 J. Alloy Compd. 641 30
[26] Jiang G Y, He J, Zhu T J, Fu C, Liu X, Hu L, Zhao X B 2014 Adv. Funct. Mater. 24 3776
-
[1] Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Yu, Vedernikov M V 2006 Phys. Rev. B 74 045207
[2] Culp S R, Poon S J, Hickman N, Tritt T M, Blumm J 2006 Appl. Phys. Lett. 88 042106
[3] Kumar P, Kashyap S C, Sharma V K, Cupta H C 2015 Chin. Phys. B 24 098101
[4] Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202
[5] Zhang Y C, He J Z, Xiao Y L, Liang H N 2014 Mod. Phys. Lett. 28 1450018
[6] Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 物理学报 63 057201]
[7] Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X F, Zhang Q J, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893
[8] Zhang X, Liu H, Lu Q, Zhang J X, Zhang F P 2013 Appl. Phys. Lett. 103 063901
[9] Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B, Tritt T M 2008 Appl. Phys. Lett. 93 102109
[10] Liu X H, Zhu T J, Wang H, Hu L P, Xie H H, Jiang G Y, Snyder G J, Zhao X B 2013 Adv. Energy Mater. 3 1238
[11] Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333
[12] Yi T H, Chen S P, Li S, Yang H, Bux S, Bian Z X, Katcho N A, Shakouri A, Mingo N, Fleurial J P, Browning N D, Kauzlarich S M 2012 J. Mater. Chem. 47 24805
[13] Chen S P, Zhang X, Fan W H, Yi T H, Quach D V, Bux S, Meng Q S, Kauzlarich S M, Munir Z A 2015 J. Alloys Compd. 625 251
[14] Berthebaud D, Gascoin F 2013 J. Solid State Chem. 202 61
[15] Du Z L, Zhu T J, Chen Y, He J, Gao H L, Jiang G Y, Tritt T M, Zhao X B 2012 J. Mater. Chem. 22 6838
[16] Liu W, Tang X F, Li H, Yin K, Sharp J, Zhou X Y, Uher C 2012 J. Mater. Chem. 22 13653
[17] Xu H J, Shi J Y, Ruan Y Z 2001 Material Science Foundation (Beijing: Beijing University of Technology Press) p281 (in Chinese) [徐恒军, 石巨岩, 阮玉忠 2001 材料科学基础(北京: 北京工业出版社)第281页]
[18] Gao P, Lu X, Berkun I, Schmidt R D, Hogan T P 2014 Appl. Phys. Lett. 105 202104
[19] May A F, Snyder G J 2012 Materials, Preparation, and Characterization in Thermoelectrics (Boca Raton: CRC Press) pp11.1-11.17
[20] Bux S K, Yeung M T, Toberer E S, Snyder G J, Kaner R B, Fleurial J P 2011 J. Mater. Chem. 21 12259
[21] Blunt R F, Frederikse H P R, Hosler W R 1955 Phys. Rev. 100 663
[22] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 336
[23] Yan J K 2009 Ph. D. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [严继康 2009 博士学位论文 (昆明: 昆明理工大学)]
[24] Seo J W, Kim C M, Park K 2015 Powder Technol. 278 11
[25] Chen X, Shi L, Zhou J, Goodenough J B 2015 J. Alloy Compd. 641 30
[26] Jiang G Y, He J, Zhu T J, Fu C, Liu X, Hu L, Zhao X B 2014 Adv. Funct. Mater. 24 3776
Catalog
Metrics
- Abstract views: 5855
- PDF Downloads: 177
- Cited By: 0