Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of single-photon Compton scattering process of bound electrons in intense laser fields by using frequency-domain theory

QIU Yuanyuan YANG Yujun GUO Yingchun WEI Zhiyi WANG Bingbing

Citation:

Study of single-photon Compton scattering process of bound electrons in intense laser fields by using frequency-domain theory

QIU Yuanyuan, YANG Yujun, GUO Yingchun, WEI Zhiyi, WANG Bingbing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Compton scattering is defined as an inelastic scattering process in which the interaction between strong laser fields and electrons in matter leads to photon emission. In recent years, with the rapid development of X-ray free-electron lasers, the intensity of X-ray lasers has steadily increased, and the photon energy in Compton scattering process has risen correspondingly. Previous studies focus on single-photon Compton scattering of free electrons. However, the mechanism of non-relativistic X-ray photon scattering by bound electrons remains to be elucidated. Therefore, we develop a frequency-domain theory based on non-perturbative quantum electrodynamics to investigate single-photon Compton scattering of bound electrons in strong X-ray laser fields. Our results show that the double-differential probability of Compton backscattering decreases with the increase of incident photon energy. This work establishes a relationship between Compton scattering and atomic ionization in high-frequency intense laser fields, thereby providing a platform for studying atomic structure dynamics under high-intensity laser conditions.
  • 图 1  不同核电荷数类氢离子的波长与康普顿散射DDP谱图. 入射光子能量${\omega _1} = 17.4\;{\mathrm{keV}}$, 散射角$\theta = 133.75 ^\circ $, 其中实心曲线为QED理论计算的结果, 空心曲线是Eisenberger利用IA理论得到的结果

    Figure 1.  Wavelength and double-differential probability spectra of Compton scattering for hydrogen-like ions with different nuclear charge numbers Z. Incident photon energy ${\omega _1} = 17.4\;{\mathrm{keV}}$, scattering angles $\theta = 133.75 ^\circ $. The solid curves represent results calculated using QED theory, while the hollow curves are those obtained by Eisenberger using the impulse approximation.

    图 2  (a) 入射、散射光的波矢和偏振的几何示意图, xoz平面由入射激光的偏振$ ({\epsilon}_{1}) $和波矢量(k1)定义, 散射光子方向由球坐标$\left( {\theta , \phi } \right)$表征; (b)—(d) 康普顿散射的DDP关于散射光子能量$ {\mathrm{\omega }}_{2} $和散射角$\theta $的分布, 白色点表示自由电子模型预测值; (e)—(g) 实心和空心曲线分别是利用频域理论和Klein-Nishina公式计算得到的康普顿散射微分概率关于散射角的分布; 入射光子能量分别为500 eV (b), (e), 1 keV (c), (f), 10 keV (d), (g), 激光强度$I = 4 \times 1{0^{20}}\;\mathrm{W/cm}^2$

    Figure 2.  (a) Geometric diagram of wave vectors and polarization states of incident and scattered light. The xoz plane is defined by the polarization $ \left({\epsilon}_{1}\right) $and wave vector (k1) of the incident laser, while the direction of the scattered photon is characterized by spherical coordinates $\left( {\theta , \phi } \right)$. (b)–(d) The double-differential cross-section of Compton scattering as a function of scattered photon energy and scattering angle, with white dots indicating predictions from the free-electron model. (e)–(g) Solid and hollow curves represent differential probability distributions of Compton scattering versus scattering angle, calculated using frequency-domain theory and the Klein-Nishina formula, respectively. The incident photon energies are 500 eV (b), (e) , 1 keV (c), (f) and 10 keV (d), (g) with laser intensity $I = 4 \times 1{0^{20}}\;\mathrm{W/cm}^2$.

    图 3  动量空间中基态电子的密度分布随散射光能量和散射角的变化 (a) ${\omega _1} = 1\;{\mathrm{keV}}$; (b) ${\omega _1} = 10\;{\mathrm{keV}}$; 激光强度$I = $$ 4 \times 1{0^{20}}\;\mathrm{W/cm}^2$, 图中虚线表示(19)式自由电子模型预测散射光子能量值随散射角的变化

    Figure 3.  Variation of the electron density distribution in momentum space for ground-state electrons as a function of scattered photon energy and scattering angle with laser intensity $I = 4 \times 1{0^{20}}\;\mathrm{W/cm}^2$: (a) ${\omega _1} = 1\;{\mathrm{keV}}$; (b) ${\omega _1} = 10\;{\mathrm{keV}}$. Dashed lines indicate the scattered photon energy versus scattering angle predicted by the free-electron model in Eq. (19).

    图 4  实心曲线是利用频域理论计算的康普顿散射DDP与散射角的关系, 其中$ {\omega _1} = 1\;{\mathrm{keV}}, 5\;{\mathrm{keV}}, 10\;{\mathrm{keV}} $, ${\omega _2} \approx{\omega _1} - $$ {I_{\text{P}}}$, 空心曲线是利用汤姆孙公式计算的微分概率与散射角的关系

    Figure 4.  Dependence of the double-differential probability of Compton scattering on scattering angle, calculated using frequency-domain theory (solid curve). $ {\omega _1} =1\;{\mathrm{keV}},5\;{\mathrm{keV}}, $$ 10\;{\mathrm{keV}} $, ${\omega _2} \approx {\omega _1} - {I_{\text{P}}}$. The hollow curve shows the differential cross-section derived from the Thomson scattering formula as a function of the scattering angle.

  • [1]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [2]

    Cooper M 1971 Adv. Phys. 20 453Google Scholar

    [3]

    Ching W, Callaway J 1974 Phys. Rev. B 9 5115Google Scholar

    [4]

    Laurent D, Wang C, Callaway J 1978 Phys. Rev. B 17 455

    [5]

    Jaiswal P, Shukla A 2007 Phys. Rev. A 75 022504Google Scholar

    [6]

    Kaneyasu T, Takabayashi Y, Iwasaki Y, Koda S 2011 Nucl. Instrum. Methods Phys. Res. A 659 30Google Scholar

    [7]

    Sun C, Wu Y K 2011 Phys. Rev. Accel. Beams 14 044701Google Scholar

    [8]

    葛愉成 2009 物理学报 58 3094Google Scholar

    Ge Y C 2009 Acta Phys. Sin. 58 3094Google Scholar

    [9]

    Wentzel G 1927 Z. Angew. Phys. 43 524

    [10]

    Du Mond J W M 1929 Phys. Rev. 33 643Google Scholar

    [11]

    Du Mond J W M 1933 Rev. Mod. Phys. 5 1Google Scholar

    [12]

    Eisenberger P, Platzman P 1970 Phys. Rev. A 2 415Google Scholar

    [13]

    Florescu V, Pratt R H 2009 Phys. Rev. A 80 033421Google Scholar

    [14]

    LaJohn L A 2010 Phys. Rev. A 81 043404Google Scholar

    [15]

    Pratt R H, LaJohn L A, Florescu V, Surić T, Chatterjee B K, Roy S C 2010 Radiat. Phys. Chem. 79 124Google Scholar

    [16]

    Huang Z, Kim K J 2007 Phys. Rev. Spec. Top. Accel. Beams 10 034801Google Scholar

    [17]

    Young L, Kanter E P, Krassig B, Li Y, March A M, Pratt S T, Santra R, Southworth S H, Rohringer N, DiMauro L F, Doumy G, Roedig C A, Berrah N, Fang L, Hoener M, Bucksbaum P H, Cryan J P, Ghimire S, Glownia J M, Reis D A, Bozek J D, Bostedt C, Messerschmidt M 2010 Nat. 466 56Google Scholar

    [18]

    Hoener M, Fang L, Kornilov O, Gessner O, Pratt S T, Gu¨hr M, Kanter E P, Blaga C, Bostedt C, Bozek J D, Bucksbaum P H, Buth C, Chen M, Coffee R, Cryan J, DiMauro L, Glownia M, Hosler E, Kukk E, Leone S R, McFarland B, Messerschmidt M, Murphy B, Petrovic V, Rolles D, Berrah N 2010 Phys. Rev. Lett. 104 253002Google Scholar

    [19]

    Fang L, Hoener M, Gessner O, Tarantelli F, Pratt S T, Kornilov O, Buth C, . Gu¨hr M, Kanter E P, Bostedt C, Bozek J D, Bucksbaum P H, Chen M, Coffee R, Cryan J, Glownia M, Kukk E, Leone S R, Berrah N 2010 Phys. Rev. Lett. 105 083005Google Scholar

    [20]

    Yan J W, Qin W L, Chen Y, Decking W, Dijkstal P, Guetg M, Inoue I, Kujala N, Liu S, Long T Y, Mirian N, Geloni G 2024 Nat. Photon. 18 1293Google Scholar

    [21]

    Halavanau A, Decker F J, Emma C, Sheppard J, Pellegrini C 2019 J. Synchrotron Rad. 26 635Google Scholar

    [22]

    Pandey S, Bean R, Sato T, Poudyal I, Bielecki J, Villarreal J C, Yefanov O, Mariani V, White T A, Kupitz C, Hunter M, Abdellatif M H, Bajt S, Bondar V, Echelmeier A, Doppler D, Emons M, Frank M, Fromme R, Gevorkov Y, Giovanetti G, Jiang M, Kim D, Kim Y, Kirkwood H, Klimovskaia A, Knoska J, Koua F H M, Letrun R, Lisova S, Maia L, Mazalova V, Meza D, Michelat T, Ourmazd A, Palmer G, Ramilli M, Schubert R, Schwander P, Silenzi A, Dambietz J S, Tolstikova A, Chapman H N, Ros A, Barty A, Fromme P, Mancuso A P, Schmidt M 2020 Nat. Methods 17 73Google Scholar

    [23]

    Liu T, Huang N S, Yang H X, Qi Z, Zhang K Q, Gao Z F, Chen S, Feng C, Zhang W, Luo H, Fu X X, Liu H, Faatz B, Deng H X, Liu B, Wang D, Zhao Z T 2023 Front. Phys. 11 1172368Google Scholar

    [24]

    Kircher M, Trinter F, Grundmann S, Kastirke G, Weller M, Vela-Perez I, Khan A, Janke C, Waitz M, Zeller S, Mletzko T, Kirchner D, Honkimäki V, Houamer S, Chuluunbaatar O, Popov Y V, Volobuev I P, Schöffler M S, Schmidt L P H, Jahnke T, Dörner R 2022 Phys. Rev. Lett. 128 053001Google Scholar

    [25]

    Fuchs M, Trigo M, Chen J, Ghimire S, Shwartz S, Kozina M, Jiang M, Henighan T, Bray C, Ndabashimiye G, Bucksbaum P H, Feng Y, Herrmann S, Carini G A, Pines J, Hart P, Kenney C, Guillet S, Boutet S, Williams G J, Messerschmidt M, Seibert M M, Moeller S, Hastings J B, Reis D A 2015 Nat. Phys. 11 964Google Scholar

    [26]

    Hopersky A N, Nadolinsky A M, Novikov S A 2015 Phys. Rev. A 92 052709Google Scholar

    [27]

    Krebs D, Reis D A, Santra R 2019 Phys. Rev. A 99 022120Google Scholar

    [28]

    Venkatesh A, Robicheaux F 2020 Phys. Rev. A 101 013409Google Scholar

    [29]

    Shi S, Chen J, Yang Y J, Yan Z C, Liu X J, Wang B B 2022 Opt. Express 30 1664Google Scholar

    [30]

    Dai D J, Fu L B 2022 Phys. Rev. A 105 013101Google Scholar

    [31]

    Gell-Mann M, Goldberger M L 1953 Phys. Rev. 91 398Google Scholar

    [32]

    Guo D S, Åberg T, Crasemann B 1989 Phys. Rev. A 40 4997Google Scholar

    [33]

    Gao L H, Li X F, Fu P M, Freeman R R, Guo D S 2000 Phys. Rev. A 61 063407Google Scholar

    [34]

    Wang B B, Gao L H, Li X F, Guo D S, Fu P M 2007 Phys. Rev. A 75 063419Google Scholar

    [35]

    Wang B B, Guo Y C, Chen J, Yan Z C, Fu P M 2012 Phys. Rev. A 85 023402Google Scholar

    [36]

    Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902.Google Scholar

    [37]

    Zhong S Y, Liang Y Y, Wang S, Teng H, He X K, Wei Z Y 2022 Futures 1 032201Google Scholar

    [38]

    He P L, He F 2015 Phys. Scr. 90 045402Google Scholar

    [39]

    Zhang K, Chen J, Hao X L, Fu P M, Yan Z C, Wang B B 2013 Phys. Rev. A 88 043435Google Scholar

    [40]

    Jin F C, Li F, Yang Y J, Chen J, Liu X J, Wang B B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 245601Google Scholar

    [41]

    Guo Y, Fu P, Yan Z C, Gong J, Wang B B 2009 Phys. Rev. A 80 063408Google Scholar

    [42]

    Jin F C, Tian Y Y, Chen J, Yang Y J, Liu X J, Yan Z C, Wang B B 2016 Phys. Rev. A 93 043417Google Scholar

    [43]

    Jin F C, Chen J, Yang Y, Yan Z C, Wang B B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 195602Google Scholar

    [44]

    Fang Y Q, Sun F X, He Q Y, Liu Y Q 2023 Phys. Rev. Lett. 130 253201Google Scholar

    [45]

    Åberg T, Guo D S, Ruscheinski J, Crasemann B 1991 Phys. Rev. A 44 3169Google Scholar

    [46]

    Åberg T 1993 Phys. Scr. 1993 173

    [47]

    Hu X, Wang H, Guo D S 2008 Can. J. Phys. 86 863Google Scholar

    [48]

    Guo D S, Drake G W F 1992 J. Phys. A: Math. Gen. 25 3383Google Scholar

    [49]

    Guo D S, Drake G W F 1992 J. Phys. A: Math. Gen. 25 5377Google Scholar

    [50]

    Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705Google Scholar

    [51]

    Klein O, Nishina Y 1929 Z. Angew. Phys. 52 853

    [52]

    闫文超, 朱常青, 王进光, 冯杰, 李毅飞, 谭军豪, 陈黎明 2021 物理学报 70 084104Google Scholar

    Yan W C, Zhu C Q, Wang J G, Feng J, Li Y F, Tan J H, Chen L M 2021 Acta Phys. Sin. 70 084104Google Scholar

  • [1] WANG Chunjie, GUAN Qingdi, JIANG Wengang, YU Qingjiang, XIE Feng, YU Gongshuo, LIANG Jianfeng, LI Xuesong, XU Jiang. Influence of event sequence reconstruction on imaging resolution of Compton camera. Acta Physica Sinica, doi: 10.7498/aps.74.20241723
    [2] Chen Yan-Hong, Wang Zhao, Zhou Ze-Xian, Tao Ke-Wei, Jin Xue-Jian, Shi Lu-Lin, Wang Guo-Dong, Yu Pei, Lei Yu, Wu Xiao-Xia, Cheng Rui, Yang Jie. Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target. Acta Physica Sinica, doi: 10.7498/aps.73.20231736
    [3] Dong Xu, Huang Yong-Sheng, Tang Guang-Yi, Chen Shan-Hong, Si Mei-Yu, Zhang Jian-Yong. Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering. Acta Physica Sinica, doi: 10.7498/aps.70.20202081
    [4] Zhang Zhi-Zhen, Li Liang. Calculation and analysis of key physical problems: Fluorescence yield, deexcitation time, scattering and polarization in X-ray fluorescence CT imaging. Acta Physica Sinica, doi: 10.7498/aps.70.20210765
    [5] Song Zhang-Yong, Yu De-Yang, Cai Xiao-Hong. Analysis and simultion for Compton camera′s imaging resolution. Acta Physica Sinica, doi: 10.7498/aps.68.20182245
    [6] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, doi: 10.7498/aps.66.010703
    [7] Yang Yang, Li Xiu-Kun. Blind source extraction based on time-frequency characteristics for underwater object acoustic scattering. Acta Physica Sinica, doi: 10.7498/aps.65.164301
    [8] Ma Yong-Peng, Zhao Xiao-Li, Liu Ya-Wei, Xu Long-Quan, Kang Xu, Yang Ke, Yan Shuai, Zhu Lin-Fan. Investigation of Compton profiles of NO and C2H2. Acta Physica Sinica, doi: 10.7498/aps.64.153302
    [9] Gu Yu-Fei, Yan Bin, Li Lei, Wei Feng, Han Yu, Chen Jian. Image reconstruction based on total variation minimization and alternating direction method for Compton scatter tomography. Acta Physica Sinica, doi: 10.7498/aps.63.018701
    [10] Wu Dai, Liu Wen-Xin, Tang Chuan-Xiang, Li Ming. Research of Kramers-Krnig relationship for reconstruction of ultrashort electron longitudinal bunch profile by means of frequency domain measurements. Acta Physica Sinica, doi: 10.7498/aps.60.082901
    [11] Meng Xian-Zhu, Wang Ming-Hong, Ren Zhong-Min. Analysis of high brightness laser synchrotron source based on the technique of oval supercavity. Acta Physica Sinica, doi: 10.7498/aps.59.1638
    [12] Hu Hai-Xin, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Tight binding studies on the electronic structure of graphene nanoribbons. Acta Physica Sinica, doi: 10.7498/aps.58.7156
    [13] Ge Yu-Cheng. Physical properties of laser-electron Compton scattering. Acta Physica Sinica, doi: 10.7498/aps.58.3094
    [14] Wang Wei, Zhang Jie, Zhao Gang. Effect of a Planckian radiation field on population of bound-electrons. Acta Physica Sinica, doi: 10.7498/aps.57.1759
    [15] Ye Zi-Piao, Dai Chang-Jiang, He Hui-Lin. . Acta Physica Sinica, doi: 10.7498/aps.51.935
    [16] CHEN XUE-JUN, WANG YAN, LI BO, DENG XIN-YUAN. INVERSE SCATTERING THEORY FOR ELECTRON COLLISION WITH ATOMS AND MOLECULES. Acta Physica Sinica, doi: 10.7498/aps.43.1759
    [17] WANG XIAO, CAI JIAN-HUA. PLASMON THEORY OF THREE-DIMENSIONAL TIGHT-BINDING ELECTRON GAS. Acta Physica Sinica, doi: 10.7498/aps.42.1149
    [18] JIANG QI, TAO RUI-BAO. REAL-SPACE RENORMALIZATION STUDY OF TIGHT-BIN-DING HAMILTONIAN WITH ARBITRARY BAND FILLING. Acta Physica Sinica, doi: 10.7498/aps.38.1778
    [19] . Acta Physica Sinica, doi: 10.7498/aps.21.1927
    [20] HSU YUNG-CHANG, CHENG LIN-SHENG. COINCIDENCES CAUSED BY COMPTON BACKSCATTERING OF GAMMA-RAYS. Acta Physica Sinica, doi: 10.7498/aps.14.114
Metrics
  • Abstract views:  258
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2025
  • Accepted Date:  23 May 2025
  • Available Online:  12 June 2025
  • /

    返回文章
    返回