Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target

Chen Yan-Hong Wang Zhao Zhou Ze-Xian Tao Ke-Wei Jin Xue-Jian Shi Lu-Lin Wang Guo-Dong Yu Pei Lei Yu Wu Xiao-Xia Cheng Rui Yang Jie

Citation:

Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target

Chen Yan-Hong, Wang Zhao, Zhou Ze-Xian, Tao Ke-Wei, Jin Xue-Jian, Shi Lu-Lin, Wang Guo-Dong, Yu Pei, Lei Yu, Wu Xiao-Xia, Cheng Rui, Yang Jie
PDF
HTML
Get Citation
  • Partially ionized plasma contains the bound electrons, which have an effect on the instability of the plasma. The evolution process of bound electron density cannot be obtained by using the existing optical method used for diagnosing the free electron density. In this work, we carry out a high-precision experiment: the energy loss of a 100 keV proton beam penetrating through the partially ionized hydrogen plasma target is measured on the platform of ion beam-plasma interaction at the Institute of Modern Physics, Chinese Academy of Sciences. The bound electron density is obtained according to the energy loss model of Bethe theory. The free electron density is measured by laser interferometry and the electron tempercture is obtained from the measured spectrum (Te = 0.68 eV; nfe = 2.41×1017 cm–2). It is found that the bound electron density decreases during plasma lifetime. The diagnosis of bound electron density by measuring energy loss of ion beam has the advantages of on-line, in-situ and high resolution, thus providing a new way to solve the problem about measuring the bound electron density in partially ionized plasma. A COMSOL simulation reveals that the high-temperature free electrons will be ejected quickly out of the plasma area through a mechanical diaphragm, thus reducing the total number of free electrons. In order to maintain a relatively high degree of ionization in this plasma, in principle, more and more bound electrons are ionized into free electrons, the density of bound electrons decreases correspondingly. The simulation result accords well with our experimental data. Based on this finding, more detailed plasma target parameter is obtained, which is helpful in deepening the understanding of the interaction process between ion beam and plasma. In future, more researches of low low-energy highly-charged ions-plasma interaction will be conducted.
      Corresponding author: Cheng Rui, chengrui@impcas.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2022YFA1602500) and the International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 12120101005).
    [1]

    Peacock N J, Robinson D C, Forrest M J, Wilcock P D, Sannikov V V 1969 Nature 224 488Google Scholar

    [2]

    Sun D X, Su M G, Dong C Z 2013 Eur. Phys. J. Appl. Phys. 61 30802Google Scholar

    [3]

    David C, Avizonis P, Weichel H, Pyatt K 1996 IEEE J. Quant. Elect. 2 493Google Scholar

    [4]

    Weber B, Fulghum S 1997 Rev. Sci. Instrum. 68 1227Google Scholar

    [5]

    Rocca J J, Hammarsten E C, Jankowska E 2003 Phys. Plas. 10 2031Google Scholar

    [6]

    José L B, Igor A, Manuel C, Turlough D, Robert F P, Holly G, Maxim K, Elena K, Ildar F S, Roberto S, Enrique V S, Teimuraz Z 2018 Space. Sci. Rev. 214 58Google Scholar

    [7]

    Cao S Q, Su M G, Sun D X, Min Q, Dong C Z 2016 Chin. Phys. Lett. 33 045201Google Scholar

    [8]

    Tan W Q, Liu Y Y, Li X Y, Yuan P, Zhao H, Li Z C, Zheng J 2021 J. Appl. Phys. 129 043302Google Scholar

    [9]

    Zhang S, Chen C, Lan T, Ding W X, Zhuang G, Mao W Z, Lan S J, Wu J, Xu H Q, Deng T J, Zhu J F, Wu J R, Zu Y M, Kong D F, Zhang S B, Yao Y, Wei Z A, Liu Z X, Zhou H Y, Wang H, Wen X H, Liu A, Xie J L, Li H, Xiao C J, Liu W D 2020 Rev. Sci. Instrum. 91 063501Google Scholar

    [10]

    Xu G, Barriga-Carrasco M D, Blazevic A, Borovkov B, Casas D, Cistakov K, Gavrilin R, Iberler M, Jacoby J, Loisch G, Morales R, Mäder R, Qin S X, Rienecker T, Rosmej O, Savin S, Schönlein A, Weyrich K, Wiechula J, Wieser J, Xiao G Q, Zhao Y T 2017 Phys. Rev. Lett. 119 204801Google Scholar

    [11]

    Bethe H 1930 Annalen Phys. (Leipzig) 397 325Google Scholar

    [12]

    Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D 2018 Laser Part. Beams 36 98Google Scholar

    [13]

    史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根 2023 物理学报 72 133401Google Scholar

    Shi L L, Cheng R, Wang Z, Cao S Q, Yang J, Zhou Z X, Chen Y H, Wang G D, Hui D X, Jin X J, Wu X X, Lei Y, Wang Y Y, Su M G 2023 Acta Phys. Sin. 72 133401Google Scholar

    [14]

    王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 物理学报 72 043401Google Scholar

    Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta Phys. Sin. 72 043401Google Scholar

    [15]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [16]

    骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar

    Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar

    [17]

    Kuznetsov A P, Byalkovskii O A, Gavrilin R O, Golubev A A, Gubskii K L, Rudskoi I V, Savin S M, Turtikov V I, Khudomyasov A V 2013 Plasma Phys. Rep. 39 248Google Scholar

    [18]

    Cheng R, Zhao Y T, Zhou X M, Li Y F, Wang Y Y, Lei Y, Sun Y B, Wang X, Yu Y, Ren J R, Liu S D, Xiao G Q, Hoffmann D H H 2013 Phys. Scr. T156 014074Google Scholar

    [19]

    Kuznetsov A P, Golubev A A, Kozin G I, Mutin T Y, Savelov A S, Fertman A D 2006 Instrum. Exp. Tech. 49 247Google Scholar

    [20]

    Zhang H C, Lu J, Shen Z H, Ni X W 2009 Opt. Commun. 282 1720Google Scholar

    [21]

    Hanif M, Salik M 2014 J. Russ. Laser Res. 35 230Google Scholar

    [22]

    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press) p281

    [23]

    NIST Atomic Spectra Database, Kramida A, Ralchenko Y, Reader J, NIST ASD Team https://physics.nist.gov/asd [2023-8-17]

    [24]

    Chandrasekhar S 1943 Rev. Mod. Phys. 15 1Google Scholar

    [25]

    Zhang Y N, Liu C L, Cheng R, Zhao Y T, He B 2020 Phys. Plas. 27 093107Google Scholar

    [26]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 23 82Google Scholar

    [27]

    Gus’kov S Y, Zmitrenko N V, Il’in D V, Levkovskii A A, Rozanov V B, Sherman V E 2009 Laser Plas. 35 771Google Scholar

    [28]

    Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Yang J, Ma X W 2021 Laser Part. Beams 2021 e15Google Scholar

    [29]

    McKenna K F, York T M 1977 Phys. Fluids 20 1556Google Scholar

    [30]

    Commisso R J, Bartsch R R, Ekdahl C A, Freese K B, McKenna K F, Guthrie Miller, Siemon R E 1981 Phys. Fluids 24 1919Google Scholar

    [31]

    Schneider W 1972 Zeitschrift Phys. 252 147Google Scholar

  • 图 1  中国科学院近代物理研究所的离子束与等离子体相互作用实验平台

    Figure 1.  Experimental setups of ions beam-plasmas interaction at the Institute of Modern Physics, Chinese Academy of Sciences.

    图 2  气体放电等离子体装置结构图

    Figure 2.  Structure diagram of the gas discharged plasma target

    图 3  (a)激光干涉成像设备示意图(M1, M2, M3为反射镜, BS1, BS2为半透半反镜, L1, L2为凸透镜); (b)氢气放电等离子体(P = 1.03 mbar, HV = 4 kV)的干涉条纹随时间的演化图像

    Figure 3.  (a) Structure diagram of laser interference imaging equipment (M1, M2, M3 are reflectors, BS1, BS2 are semi-transparent and semi-reflective mirrors, L1, L2 are convex lenses); (b) evolution of interference fringes (P = 1.03 mbar, HV = 4 kV) over hydrogen plasma lifetime.

    图 4  激光干涉成像方式测量氢等离子体(1.03 mbar, 3—5 kV) (a)自由电子密度随时间的变化; (b)放电电流随时间的变化

    Figure 4.  Measurement of hydrogen plasma by laser interferometric imaging (1.03 mbar, 3–5 kV): (a) Change in the density of free electrons with time; (b) variation of discharge current with time.

    图 5  放电氢等离子体(1.03 mbar, 4 kV)的温度随时间的变化

    Figure 5.  Electron temperature of plasma (1.03 mbar, 4 kV) as a function of discharge time.

    图 6  100 keV质子束与等离子体(nfe = 2.41×1017 cm–2, nbe = 5.27×1017 cm–2)作用后的能损随电子温度的变化以及G函数随温度的变化

    Figure 6.  Evolution of energy loss of 100 keV H ion in the plasma (nfe = 2.41×1017 cm–2, nbe = 5.27×1017 cm–2) and G function with temperature.

    图 7  (a) 100 keV质子束与部分电离氢等离子体靶(1.03 mbar, 4 kV)相互作用后的能量损失(■为实验点, ▲与 — 分别为Bethe计算的束缚电子与自由电子部分能损数值); (b)氢等离子体中的电子密度; (c)电离度随时间的变化

    Figure 7.  (a) Evolution of energy loss of 100 keV H+ ion in the plasma (1.03 mbar, 4 kV) during plasma lifetime (■ is the experimental point of energy loss of H+, ▲与 — is the energy loss contributed by bound electron density and free electron density calculated by Bethe theory, respectively); (b) change of electron density; (c) ionization degree with time.

    图 8  (a)气体放电靶的二维模型中阳极(20 mm)和阴极区域(30 mm)区域; (b) t = 3 μs时放电过程中电势分布; (c), (d)等离子体中自由电子密度分别在t = 1.1, 3 μs时的分布

    Figure 8.  (a) Two-dimensional model with anode (20 mm), tube wall (20 mm) and cathode (30 mm) regions of cavity; (b) potential distribution during discharge at t = 3 μs; (c), (d) free electron density of plasma in the t = 1.1, 3 μs.

  • [1]

    Peacock N J, Robinson D C, Forrest M J, Wilcock P D, Sannikov V V 1969 Nature 224 488Google Scholar

    [2]

    Sun D X, Su M G, Dong C Z 2013 Eur. Phys. J. Appl. Phys. 61 30802Google Scholar

    [3]

    David C, Avizonis P, Weichel H, Pyatt K 1996 IEEE J. Quant. Elect. 2 493Google Scholar

    [4]

    Weber B, Fulghum S 1997 Rev. Sci. Instrum. 68 1227Google Scholar

    [5]

    Rocca J J, Hammarsten E C, Jankowska E 2003 Phys. Plas. 10 2031Google Scholar

    [6]

    José L B, Igor A, Manuel C, Turlough D, Robert F P, Holly G, Maxim K, Elena K, Ildar F S, Roberto S, Enrique V S, Teimuraz Z 2018 Space. Sci. Rev. 214 58Google Scholar

    [7]

    Cao S Q, Su M G, Sun D X, Min Q, Dong C Z 2016 Chin. Phys. Lett. 33 045201Google Scholar

    [8]

    Tan W Q, Liu Y Y, Li X Y, Yuan P, Zhao H, Li Z C, Zheng J 2021 J. Appl. Phys. 129 043302Google Scholar

    [9]

    Zhang S, Chen C, Lan T, Ding W X, Zhuang G, Mao W Z, Lan S J, Wu J, Xu H Q, Deng T J, Zhu J F, Wu J R, Zu Y M, Kong D F, Zhang S B, Yao Y, Wei Z A, Liu Z X, Zhou H Y, Wang H, Wen X H, Liu A, Xie J L, Li H, Xiao C J, Liu W D 2020 Rev. Sci. Instrum. 91 063501Google Scholar

    [10]

    Xu G, Barriga-Carrasco M D, Blazevic A, Borovkov B, Casas D, Cistakov K, Gavrilin R, Iberler M, Jacoby J, Loisch G, Morales R, Mäder R, Qin S X, Rienecker T, Rosmej O, Savin S, Schönlein A, Weyrich K, Wiechula J, Wieser J, Xiao G Q, Zhao Y T 2017 Phys. Rev. Lett. 119 204801Google Scholar

    [11]

    Bethe H 1930 Annalen Phys. (Leipzig) 397 325Google Scholar

    [12]

    Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D 2018 Laser Part. Beams 36 98Google Scholar

    [13]

    史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根 2023 物理学报 72 133401Google Scholar

    Shi L L, Cheng R, Wang Z, Cao S Q, Yang J, Zhou Z X, Chen Y H, Wang G D, Hui D X, Jin X J, Wu X X, Lei Y, Wang Y Y, Su M G 2023 Acta Phys. Sin. 72 133401Google Scholar

    [14]

    王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 物理学报 72 043401Google Scholar

    Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta Phys. Sin. 72 043401Google Scholar

    [15]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [16]

    骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar

    Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar

    [17]

    Kuznetsov A P, Byalkovskii O A, Gavrilin R O, Golubev A A, Gubskii K L, Rudskoi I V, Savin S M, Turtikov V I, Khudomyasov A V 2013 Plasma Phys. Rep. 39 248Google Scholar

    [18]

    Cheng R, Zhao Y T, Zhou X M, Li Y F, Wang Y Y, Lei Y, Sun Y B, Wang X, Yu Y, Ren J R, Liu S D, Xiao G Q, Hoffmann D H H 2013 Phys. Scr. T156 014074Google Scholar

    [19]

    Kuznetsov A P, Golubev A A, Kozin G I, Mutin T Y, Savelov A S, Fertman A D 2006 Instrum. Exp. Tech. 49 247Google Scholar

    [20]

    Zhang H C, Lu J, Shen Z H, Ni X W 2009 Opt. Commun. 282 1720Google Scholar

    [21]

    Hanif M, Salik M 2014 J. Russ. Laser Res. 35 230Google Scholar

    [22]

    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press) p281

    [23]

    NIST Atomic Spectra Database, Kramida A, Ralchenko Y, Reader J, NIST ASD Team https://physics.nist.gov/asd [2023-8-17]

    [24]

    Chandrasekhar S 1943 Rev. Mod. Phys. 15 1Google Scholar

    [25]

    Zhang Y N, Liu C L, Cheng R, Zhao Y T, He B 2020 Phys. Plas. 27 093107Google Scholar

    [26]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 23 82Google Scholar

    [27]

    Gus’kov S Y, Zmitrenko N V, Il’in D V, Levkovskii A A, Rozanov V B, Sherman V E 2009 Laser Plas. 35 771Google Scholar

    [28]

    Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Yang J, Ma X W 2021 Laser Part. Beams 2021 e15Google Scholar

    [29]

    McKenna K F, York T M 1977 Phys. Fluids 20 1556Google Scholar

    [30]

    Commisso R J, Bartsch R R, Ekdahl C A, Freese K B, McKenna K F, Guthrie Miller, Siemon R E 1981 Phys. Fluids 24 1919Google Scholar

    [31]

    Schneider W 1972 Zeitschrift Phys. 252 147Google Scholar

  • [1] Wu Ming-Xing, Tian De-Yang, Tang Pu, Tian Jing, He Zi-Yuan, Ma Ping. Inversion method of two-dimensional distribution of electron density in hypersonic model wake. Acta Physica Sinica, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [2] Wang Xue-Juan, Xu Wei-Qun, Wang Hai-Tong, Yang Jing, Yuan Ping, Zhang Qi-Lin, Hua Le-Yan, Zhang Yuan-Kan. Spectral features, temperature and electron density properties of lightning M-component. Acta Physica Sinica, 2021, 70(9): 099202. doi: 10.7498/aps.70.20201875
    [3] Chen Yan-Hong, Cheng Rui, Zhang Min, Zhou Xian-Ming, Zhao Yong-Tao, Wang Yu-Yu, Lei Yu, Ma Peng-Peng, Wang Zhao, Ren Jie-Ru, Ma Xin-Wen, Xiao Guo-Qing. Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss. Acta Physica Sinica, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [4] Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Temperature and electron density in femtosecond filament-induced Cu plasma. Acta Physica Sinica, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [5] Nie Min, Tang Shou-Rong, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influence of the ionospheric sporadic E layer on the performance of quantum satellite communication in the mid latitude region. Acta Physica Sinica, 2017, 66(7): 070302. doi: 10.7498/aps.66.070302
    [6] Wang Xin-Bo, Li Yong-Dong, Cui Wan-Zhao, Li Yun, Zhang Hong-Tai, Zhang Xiao-Ning, Liu Chun-Liang. Global threshold analysis of multicarrier multipactor based on the critical density of electrons. Acta Physica Sinica, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [7] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [8] Yang Juan, Xu Ying-Qiao, Zhu Liang-Ming. Diagnostic study on the electron density distribution of microwave plasma jet in local vacuum environment. Acta Physica Sinica, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [9] Han Jing-Hua, Feng Guo-Ying, Yang Li-Ming, Zhang Qiu-Hui, Jia Jun, Li Gang, Zhu Qi-Hua, Zhou Shou-Huan. Study on the critical free electron density for nanosecond laser pulse focusing in air. Acta Physica Sinica, 2008, 57(10): 6304-6310. doi: 10.7498/aps.57.6304
    [10] Sun You-Mei, Liu Jie, Zhang Chong-Hong, Wang Zhi-Guang, Jin Yun-Fan, Duan Jing-Lai, Song Yin. Electronic energy loss of the latent track in heavy ion-irradiated polyimide. Acta Physica Sinica, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [11] Hao Zuo-Qiang, Yu Jin, Zhang Jie, Yuan Xiao-Hui, Zheng Zhi-Yuan, Yang Hui, Wang Zhao-Hua, Ling Wei-Jun, Wei Zhi-Yi. Acoustic diagnostics of plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [12] Wang Chen, Wang Wei, Sun Jin-Ren, Fang Zhi-Heng, Wu Jiang, Fu Si-Zu, Ma Wei-Xin, Gu Yuan, Wang Shi-Ji, Zhang Guo-Ping, Zheng Wu-Di, Zhang Tan-Xin, Peng Hui-Min, Shao Ping, Yi Kui, Lin Zun-Qi, Wang Zhan-Shan, Wang Hong-Chang, Zhou Bin, Chen Ling-Yan. Experimental diagnoses of plasma electron density by interferometry using an x-ray laser as probe. Acta Physica Sinica, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [13] Guo Jian-Ting, Li Yu-Fang, Xiong Liang-Yue, Ye Heng-Qiang. The micromechanism of alloying element Zr affecting the ductility of Ni33Al alloy with different Al contents. Acta Physica Sinica, 2005, 54(4): 1868-1873. doi: 10.7498/aps.54.1868
    [14] Zhang Hong, Cheng Xin-Lu, Yang Xiang-Dong, Xie Fang-Jun, Zhang Ji-Yan, Yang Guo-Hong. Study on the relationship of average ionization stage with the electron temperat ure for Au laser produced plasma. Acta Physica Sinica, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [15] WANG WEN-ZHONG, ZHANG TAN-XIN, HE ZHAO-TANG, GU YU-QIU, LONG YONG-LU, JIANG WEN-MIAN. DIAGNOSTICS OF ELECTRON DENSITY OF LASER-PRODU-CED PLASMA FROM THE XUV SPECTRA OF AgXIX. Acta Physica Sinica, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [16] WANG XIAO, CAI JIAN-HUA. PLASMON THEORY OF THREE-DIMENSIONAL TIGHT-BINDING ELECTRON GAS. Acta Physica Sinica, 1993, 42(7): 1149-1156. doi: 10.7498/aps.42.1149
    [17] Wang Xiao;Cai Jiang-hua. PLASMON THEORY OF THREE-DIMENSIONAL TIGHT-BINDING ELECTRON GAS. Acta Physica Sinica, 1991, 40(7): 1149-1156. doi: 10.7498/aps.40.1149
    [18] YU YI-JUN. MEASUREMENT OF ELECTRON DENSITY BY MEANS OF THE FLUORESCENCE OF A THERMAL LITHIUM BEAM. Acta Physica Sinica, 1990, 39(12): 1921-1927. doi: 10.7498/aps.39.1921
    [19] ZHANG HUI-HUANG, LIN ZUN-QI, HE XING-FA, ZHANG ZHENG-QUAN, WANG XIAO-QIN, LU QI-RONG, GU ZHONG-MIN, ZHUANG YU-FEI, CUI JI-XIU, YU WEN-YAN, LI JIA-MING, GONG MEI-XIA, ZHANG XIAO-QIU, LEI ZHI-YUAN, YANG BIN-ZHOU, ZHAO WEI. FEATURES OF ELECTRON DENSITY AND TIME-RESOLVED X-RAY SPECTRA FROM LATERAL JET NOZZLE OF Mg MICROTUBE TARGET. Acta Physica Sinica, 1989, 38(11): 1838-1844. doi: 10.7498/aps.38.1838
    [20] CHENG CHENG, SUN WEI, TANG CHUAN-SHUN. TIME RESOLVED ELECTRON TEMPERATURE AND DENSITY IN A PULSED LASER PLASMA. Acta Physica Sinica, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
Metrics
  • Abstract views:  550
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2023
  • Accepted Date:  27 December 2023
  • Available Online:  16 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回