Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Global threshold analysis of multicarrier multipactor based on the critical density of electrons

Wang Xin-Bo Li Yong-Dong Cui Wan-Zhao Li Yun Zhang Hong-Tai Zhang Xiao-Ning Liu Chun-Liang

Citation:

Global threshold analysis of multicarrier multipactor based on the critical density of electrons

Wang Xin-Bo, Li Yong-Dong, Cui Wan-Zhao, Li Yun, Zhang Hong-Tai, Zhang Xiao-Ning, Liu Chun-Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multicarrier multipactor, which is found in the wideband high power vacuum microwave passive components, potentially threatens the reliability of microwave systems in space and accelerator applications. The global threshold analysis of multicarrier multipactor is of vital importance for the risk assessment of high power vacuum devices. Till now, however, no effective solutions for the global threshold analysis of multicarrier multipactor have been proposed for practical microwave components with complex structures. In this paper, an efficient approach capable of evaluating the global threshold of multicarrier multipactor based on detectable level of multipactor test system is presented. Electromagnetic characteristics of the microwave device are theoretically related to the electron density by equivalently considering the distribution zone of electrons as a plasma medium. In order to obtain the global threshold using the optimization algorithm, such as the Monte Carlo method, we further propose an efficient approach capable of rapidly computing the fluctuation of number of electrons in the evolving process of a multicarrier multipactor based on the equivalency of half-sine-like segments for the acceleration of electrons. Analytical results comply with the tested thresholds. Different from the conventional equivalent power using the empirical rule, the proposed approach is based on the criterion of critical density of electrons and rapidly computing the fluctuation of number of electrons, providing an efficient method for the accurate global threshold analysis of multicarrier multipactor.
      Corresponding author: Li Yong-Dong, leyond@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175144) and the Foundation of National Key Laboratory of Science and Technology on Space Microwave, China (Grant Nos. 9140c530101130c53013, 9140c530101140c53231).
    [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [4]

    Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)

    [5]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [6]

    Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [7]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [8]

    Lara J D, Perez F, Alfonseca M, Galan L, Montero L, Roman E, Raboso D 2006 IEEE Trans. Plasma Sci. 34 476

    [9]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [10]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 物理学报 63 047902]

    [11]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 物理学报 63 167901]

    [12]

    ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)

    [13]

    Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112

    [14]

    Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105

    [15]

    Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Techn. 60 2093

    [16]

    Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 物理学报 63 220205]

    [17]

    Wolk D, Schmitt D, Schlipf T 2000 Proceedings of the Third International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware Noordwijk, Netherlands, September 4-6, 2000 p85

    [18]

    Anza S, Mattes M, Armendariz J, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D 2010 Proceedings of the 9th International Symposium on Ultra-Wideband, Short Pulse Electromagnetics, Sabath F, Giri D, Rachidi F, Kaelin A (Ed.) 2010 (New York: Springer) p375

    [19]

    Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)

    [20]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion (1st Ed.) (New York: Wiley) pp37-90

    [21]

    Lisovskii V A 1998 Russian Phys. J. 41 394

    [22]

    Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Bouchaud J, Georges A 1990 Phys. Reports 195 127

    [25]

    Edwards A M, Phillips R A, Watkins N W, et al. 2007 Nature 449 1044

    [26]

    Humphries N, Queiroz N, Dyer J R M, et al. 2010 Nature 465 1066

    [27]

    Shlesinger M F, Klafter J, Zumofen G 1999 Am. J. Phys. 67 1253

    [28]

    Gnedenko B V, Kolmogorov A N 1968 Limit Distributions for Sums of In-dependent Random Variables (Massachusetts: Addison-Wesley, Reading)

    [29]

    Mussawisade K, Santos J E, Schutz G M 1998 J. Phys. A: Math. Gen. 31 4381

    [30]

    Riyopoulos S 1997 Phys. Plasmas 4 1448

    [31]

    Cashwell E D, Everett C J 1959 A Practical Manual on the Monte Carlo Method for Random Walk Problems (1st Ed.) (New York: Pergamon Press)

    [32]

    Goldberg D E 1989 Genetic Algorithms in Search, Optimization Machine Learning (Boston: Addison-Wesley)

  • [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [4]

    Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)

    [5]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [6]

    Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [7]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [8]

    Lara J D, Perez F, Alfonseca M, Galan L, Montero L, Roman E, Raboso D 2006 IEEE Trans. Plasma Sci. 34 476

    [9]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [10]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 物理学报 63 047902]

    [11]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 物理学报 63 167901]

    [12]

    ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)

    [13]

    Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112

    [14]

    Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105

    [15]

    Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Techn. 60 2093

    [16]

    Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 物理学报 63 220205]

    [17]

    Wolk D, Schmitt D, Schlipf T 2000 Proceedings of the Third International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware Noordwijk, Netherlands, September 4-6, 2000 p85

    [18]

    Anza S, Mattes M, Armendariz J, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D 2010 Proceedings of the 9th International Symposium on Ultra-Wideband, Short Pulse Electromagnetics, Sabath F, Giri D, Rachidi F, Kaelin A (Ed.) 2010 (New York: Springer) p375

    [19]

    Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)

    [20]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion (1st Ed.) (New York: Wiley) pp37-90

    [21]

    Lisovskii V A 1998 Russian Phys. J. 41 394

    [22]

    Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Bouchaud J, Georges A 1990 Phys. Reports 195 127

    [25]

    Edwards A M, Phillips R A, Watkins N W, et al. 2007 Nature 449 1044

    [26]

    Humphries N, Queiroz N, Dyer J R M, et al. 2010 Nature 465 1066

    [27]

    Shlesinger M F, Klafter J, Zumofen G 1999 Am. J. Phys. 67 1253

    [28]

    Gnedenko B V, Kolmogorov A N 1968 Limit Distributions for Sums of In-dependent Random Variables (Massachusetts: Addison-Wesley, Reading)

    [29]

    Mussawisade K, Santos J E, Schutz G M 1998 J. Phys. A: Math. Gen. 31 4381

    [30]

    Riyopoulos S 1997 Phys. Plasmas 4 1448

    [31]

    Cashwell E D, Everett C J 1959 A Practical Manual on the Monte Carlo Method for Random Walk Problems (1st Ed.) (New York: Pergamon Press)

    [32]

    Goldberg D E 1989 Genetic Algorithms in Search, Optimization Machine Learning (Boston: Addison-Wesley)

  • [1] Yang Wen-Yuan, Dong Ye, Sun Hui-Fang, Yang Yu-Lin, Dong Zhi-Wei. Physical analysis and numerical simulations of ultra wideband plasma relativistic microwave noise amplifier. Acta Physica Sinica, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] Wang Xin-Bo, Bai He, Sun Qin-Fen, Yin Xin-She, Zhang Hong-Tai, Cui Wan-Zhao. Experimental study of multipactor on dielectric of penetration flange for vacuum chamber. Acta Physica Sinica, 2021, 70(12): 127901. doi: 10.7498/aps.70.20210106
    [3] Zuo Chun-Yan, Gao Fei, Dai Zhong-Ling, Wang You-Nian. PIC/MCC simulation of breakdown dynamics inside high power microwave output window. Acta Physica Sinica, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] Wang Xin-Bo, Zhang Xiao-Ning, Li Yun, Cui Wan-Zhao, Zhang Hong-Tai, Li Yong-Dong, Wang Hong-Guang, Zhai Yong-Gui, Liu Chun-Liang. Particle simulation and analysis of threshold for multicarrier multipactor. Acta Physica Sinica, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [5] Yan Xiao-Lu, Zhang Xiao-Ping, Li Yang-Mei. Particle-in-cell simulation of a new X-band low-impedance high power microwave source. Acta Physica Sinica, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402
    [6] Wang Hong-Guang, Zhai Yong-Gui, Li Ji-Xiao, Li Yun, Wang Rui, Wang Xin-Bo, Cui Wan-Zhao, Li Yong-Dong. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [7] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [8] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [9] Song Qing-Qing, Wang Xin-Bo, Cui Wan-Zhao, Wang Zhi-Yu, Ran Li-Xin. Probabilistic analysis of the lateral diffusion of secondary electrons in multicarrier multipactor. Acta Physica Sinica, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [10] Wang Hui-Hui, Liu Da-Gang, Meng Lin, Liu La-Qun, Yang Chao, Peng Kai, Xia Meng-Zhong. The numerical study of full three-dimensional particle in cell/Monte Carlo with gas ionization. Acta Physica Sinica, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [11] Shi Lei, Qian Mu-Yang, Xiao Kun-Xiang, Li Ming. Simulation study on hydrogen penning source discharge at low pressure. Acta Physica Sinica, 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
    [12] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Qiao Hai-Liang, Guo Wei-Jie, Zhang Dian-Hui. Optimal design of high-power microwave source based on particle simulation and genetic algorithms. Acta Physica Sinica, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [13] Liu Lei, Li Yong-Dong, Wang Rui, Cui Wan-Zhao, Liu Chun-Liang. Particle-in-cell simulation of corona discharge in low pressure in stepped impedance transformer. Acta Physica Sinica, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [14] Guo Fan, Li Yong-Dong, Wang Hong-Guang, Liu Chun-Liang, Hu Yi-Xiang, Zhang Peng-Fei, Ma Meng. Particle-in-cell simulation of outer magnetically insulated transmission line of Z-pinch accelerator. Acta Physica Sinica, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [15] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [16] Zheng Fei-Teng, Yang Zhong-Hai, Jin Xiao-Lin. The initiation phase of pseudospark discharge in a hollow cathode via PIC/MCC simulation. Acta Physica Sinica, 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [17] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅰ)——Physical model and theoretical methods. Acta Physica Sinica, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [18] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅱ)——Numerical simulation and discussion of results. Acta Physica Sinica, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [19] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma. Acta Physica Sinica, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] Gong Yu-Bin, Zhang Zhang, Wei Yan-Yu, Meng Fan-Bao, Fan Zhi-Kai, Wang Wen-Xiang. Simulation of pulse shortening phenomena in high power microwave tube using PIC method. Acta Physica Sinica, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
Metrics
  • Abstract views:  6172
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2015
  • Accepted Date:  28 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回