Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical method of electron-positron pairs generation in photon-photon collider

Li Ang Yu Jin-Qing Chen Yu-Qing Yan Xue-Qing

Citation:

Numerical method of electron-positron pairs generation in photon-photon collider

Li Ang, Yu Jin-Qing, Chen Yu-Qing, Yan Xue-Qing
PDF
HTML
Get Citation
  • The creation of positron and electron pairs through photon-photon collision, named Breit-Wheeler process, has been well understood in the theories of quantum electrodynamics for nearly 100 years. The photon-photon collision, which is one of the most basic processes of matter generation in the universe, has not been observed yet. The study on photon-photon collision can promote the development of two-photon physics, quantum electrodynamics theories and high energy physics. To observe photon-photon collision in the laboratory, one needs to collimate a huge number of energetic γ-ray photons into a very small spot. Recently, the development of highly collomated source generated by 10 PW laser makes photon-photon collider much more possible than before. In photon-photon collider, the study of numerical simulation plays a critical role since no experiment has achieved such a process. In this paper, a new numerical method is developed to handle the two-photon Breit-Wheeler process. This method is based on the exact two-photon collision dynamic principle, including energy threshold condition, cross-section condition, Lorentz transformation, etc. In the method, the photons are divided into quantitative photon blocks based on the spatial coordinates. Firstly, one needs to find the collision blocks according to the spatial motion law. Secondly, the ergodic method is used to look up the photons that satisfy the energy threshold condition and the cross-section condition from the blocks. Then, one can calculate the electron yield of the photon collision, and the kinetic parameters of the positrons and electrons. This method rigorously follows the physical principle so it has high precision. On the other hand, this method determines the collision of the block in advance, which can reduce the computational requirement a lot. A series of tests is carried out to confirm the accuracy and feasibility of this numerical method by calculating the collision between mono-energetic photon beams. In the tests, the collision angle is assumed to 180° and 60° separately, the results of pair momentum distribution are discussed. We also simulate the collision of the γ-ray beams generated through the interaction between ultra-intense laser and narrow tube targets. In the simulations, the collision angle is changed from 170° to 30° to see its effect on pair production. It is found that the yield of electron-positron pairs decreases with collision angle increasing, which has also been reported in previous work. Therefore, this numerical method can be efficiently used for modeling photon-photon collider, and provide theoretical reference and suggestion to the future experimental design of γ-ray collision.
      Corresponding author: Yu Jin-Qing, jinqing.yu@hnu.edu.cn
    [1]

    Marklund M, Shukla P K 2006 Rev. Mod. Phys. 78 591Google Scholar

    [2]

    Ehlotzky F, Krajewska K, Kamiński J 2009 Rep. Prog. Phys. 72 046401Google Scholar

    [3]

    Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [4]

    黄金书, 罗鹏晖, 鲁公儒 2009 物理学报 58 12

    Huang J S, Luo P H, Lu G R 2009 Acta Phys. Sin. 58 12

    [5]

    Burke D L, Field R C, Smith G H, Spencer J E, Walz D 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [6]

    Breit G, Wheeler J A 1934 Phys. Rev. 46 1087Google Scholar

    [7]

    Yu J Q, Lu H Y, Takahashi T, Hu R H, Gong Z, Ma W J, Huang Y S, Chen C E, Yan X Q 2019 Phys. Rev. Lett. 122 014802Google Scholar

    [8]

    周美林, 颜学庆 2015 物理 44 281Google Scholar

    Zhou M L, Yan X Q 2015 Physics 44 281Google Scholar

    [9]

    Brady C S, Ridgers C, Arber T, Bell A R 2013 Plasma. Phys. Controlled Fusion 55 124016Google Scholar

    [10]

    Yu J Q, Hu R H, Gong Z, Ting A, Najmudin Z, Wu D, Lu H Y, Ma W J, Yan X Q 2018 Appl. Phys. Lett. 112 204103Google Scholar

    [11]

    Yu T P, Pukhov A, Sheng Z M, Liu F, Shvets G 2013 Phys. Rev. Lett. 110 045001Google Scholar

    [12]

    Stark D J, Toncian T, Arefiev A V 2016 Phys. Rev. Lett. 116 185003Google Scholar

    [13]

    Capdessus R, Humi`eres E, Tikhonchuk V T 2013 Phys. Rev. Lett. 110 215003Google Scholar

    [14]

    Brady C S, Ridgers C P, Arber T D, Bell A R, Kirk J G 2012 Phys. Rev. Lett. 109 245006Google Scholar

    [15]

    Nakamura T, Koga J K, Esirkepov T Z, Kando M, Korn G, Bulanov S V 2012 Phys. Rev. Lett. 108 195001Google Scholar

    [16]

    Yi L, Pukhov A, Thanh P L, Shen B 2016 Phys. Rev. Lett. 116 115001Google Scholar

    [17]

    Ji L L, Snyder J, Pukhov A, Freeman R R, Akli K U 2016 Sci. Rep. 6 23256Google Scholar

    [18]

    Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E, Pukhov A 2016 Nat. Commun. 7 13686Google Scholar

    [19]

    Liu J X, Ma Y Y, Yu T P, Zhao J, Yang X H, Zou D B, Zhang G B, Zhao Y, Yang J K, Li H Z, Zhuo H B, Shao F Q, Kawata S 2017 Chin. Phys. B 26 035202Google Scholar

    [20]

    Geng P F, Lv W J, Li X L, Tang R A, Xue J K 2018 Chin. Phys. B 27 035201Google Scholar

    [21]

    Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q, Sheng Z M 2016 Chin. Phys. Lett. 33 095202Google Scholar

    [22]

    Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q, Liu J J 2015 New J. Phys. 17 053039Google Scholar

    [23]

    Liu J J, Yu T P, Yin Y, Zhu X L, Shao F Q 2016 Opt. Express 24 14

    [24]

    Yu T P, Hu L X, Yin Y, Shao F Q, Zhuo H B, Ma Y Y, Yang X H, Luo W, Pukhov A 2014 Appl. Phys. Lett. 105 114101Google Scholar

    [25]

    Luo W, Zhu Y B, Zhuo H B, Ma Y Y, Song Y M, Zhu Z C, Wang X D, Li X H, Turcu I, Chen M 2015 Phys. Plasmas 22 063112Google Scholar

    [26]

    Luo W, Wu S D, Liu W Y, Ma Y Y, Li F Y, Yuan T, Yu J Y, Chen M, Sheng Z M 2018 Plasma Phys. Controlled Fusion 60 095006Google Scholar

    [27]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Rep. 3 1912Google Scholar

    [28]

    Wang W M, Sheng Z M, Gibbon P, Chen L M, Li Y T, Zhang J 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9911Google Scholar

    [29]

    Wang W M, Gibbon P, Sheng Z M, Li Y T, Zhang J 2017 Phys. Rev. E 96 013201Google Scholar

    [30]

    Chen M, Luo J, Li F Y, Liu F, Sheng Z M, Zhang J 2016 Light-Sci. Appl. 5 e16015Google Scholar

    [31]

    Liu J B, Yu J Q, Shou Y R, Wang D H, Hu R H, Tang Y H, Wang P J, Cao Z X, Mei Z S, Lin C, Lu H Y, Zhao Y Y, Zhu K, Yan X Q, Ma W J 2019 Phys. Plasmas 26 033109Google Scholar

    [32]

    Gong Z, Hu R H, Lu H Y, Yu J Q, Wang D H, Fu E G, Chen C E, He X T, Yan X Q 2018 Plasma Phys. Controlled Fusion 60 044004Google Scholar

    [33]

    H X Chang, B Qiao, Y X Zhang, Z Xu, W P Yao, C T Zhou, X T He 2017 Phys. Plasmas 24 043111Google Scholar

    [34]

    Cristoforetti G, Londrillo P, Singh P K et al. 2017 Phys. Plasmas 7 1479Google Scholar

    [35]

    Huang T, Zhou C, Zhang H, Wu S, Qiao B, He X, Ruan S 2017 Appl. Phys. Lett. 110 021102Google Scholar

    [36]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fuison 60 044002Google Scholar

    [37]

    Ribeyre X, d’Humi`eres E, Jansen O, Jequier S, Tikhonchuk V T, Lobet M 2016 Phys. Rev. E 93 013201Google Scholar

    [38]

    Jansen O, d’Humi`eres E, Ribeyre X, Jequier S, Tikhonchuk V T 2018 J. Comput. Phys. 355 582

    [39]

    Pike O J, Mackenroth F, Hill E G, Rose S J 2014 Nat. Photonics 8 434Google Scholar

    [40]

    Ribeyre X, d’Humi`eres E, Jansen O, Jequier S, Tikhonchuk V T 2017 Plasma Phys. Controlled Fusion 59 014024Google Scholar

  • 图 1  单能光子180°对撞时 (a)电子动量分布; (b)正电子动量分布

    Figure 1.  (a) Electron momentum distribution; (b) positron momentum distribution of 180° collision of single-energy photons.

    图 2  单能光子60°对撞时 (a)电子动量分布; (b)正电子动量分布

    Figure 2.  (a) Electron momentum distribution; (b) positron momentum distribution from 60° collision of single-energy photons.

    图 3  粒子模拟程序得到的光子束角-谱分布[7,10]

    Figure 3.  Angle-spectral distribution of photon beams from particle simulator[7,10].

    图 4  106光子170°对撞电子动量极角分布 (a)区块分法一; (b)区块分法二

    Figure 4.  Polar angular distribution of electron momentum from 170° collision of 106 photons: (a) the first block division; (b) the second block division.

    图 5  电子产额随光子束对撞角的变化趋势

    Figure 5.  The trend of electronic yield with the collision angle of photon beam.

    图 6  电子产额随光子束偏移量的变化趋势

    Figure 6.  The trend of electronic yield with the offset of photon beam.

  • [1]

    Marklund M, Shukla P K 2006 Rev. Mod. Phys. 78 591Google Scholar

    [2]

    Ehlotzky F, Krajewska K, Kamiński J 2009 Rep. Prog. Phys. 72 046401Google Scholar

    [3]

    Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [4]

    黄金书, 罗鹏晖, 鲁公儒 2009 物理学报 58 12

    Huang J S, Luo P H, Lu G R 2009 Acta Phys. Sin. 58 12

    [5]

    Burke D L, Field R C, Smith G H, Spencer J E, Walz D 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [6]

    Breit G, Wheeler J A 1934 Phys. Rev. 46 1087Google Scholar

    [7]

    Yu J Q, Lu H Y, Takahashi T, Hu R H, Gong Z, Ma W J, Huang Y S, Chen C E, Yan X Q 2019 Phys. Rev. Lett. 122 014802Google Scholar

    [8]

    周美林, 颜学庆 2015 物理 44 281Google Scholar

    Zhou M L, Yan X Q 2015 Physics 44 281Google Scholar

    [9]

    Brady C S, Ridgers C, Arber T, Bell A R 2013 Plasma. Phys. Controlled Fusion 55 124016Google Scholar

    [10]

    Yu J Q, Hu R H, Gong Z, Ting A, Najmudin Z, Wu D, Lu H Y, Ma W J, Yan X Q 2018 Appl. Phys. Lett. 112 204103Google Scholar

    [11]

    Yu T P, Pukhov A, Sheng Z M, Liu F, Shvets G 2013 Phys. Rev. Lett. 110 045001Google Scholar

    [12]

    Stark D J, Toncian T, Arefiev A V 2016 Phys. Rev. Lett. 116 185003Google Scholar

    [13]

    Capdessus R, Humi`eres E, Tikhonchuk V T 2013 Phys. Rev. Lett. 110 215003Google Scholar

    [14]

    Brady C S, Ridgers C P, Arber T D, Bell A R, Kirk J G 2012 Phys. Rev. Lett. 109 245006Google Scholar

    [15]

    Nakamura T, Koga J K, Esirkepov T Z, Kando M, Korn G, Bulanov S V 2012 Phys. Rev. Lett. 108 195001Google Scholar

    [16]

    Yi L, Pukhov A, Thanh P L, Shen B 2016 Phys. Rev. Lett. 116 115001Google Scholar

    [17]

    Ji L L, Snyder J, Pukhov A, Freeman R R, Akli K U 2016 Sci. Rep. 6 23256Google Scholar

    [18]

    Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E, Pukhov A 2016 Nat. Commun. 7 13686Google Scholar

    [19]

    Liu J X, Ma Y Y, Yu T P, Zhao J, Yang X H, Zou D B, Zhang G B, Zhao Y, Yang J K, Li H Z, Zhuo H B, Shao F Q, Kawata S 2017 Chin. Phys. B 26 035202Google Scholar

    [20]

    Geng P F, Lv W J, Li X L, Tang R A, Xue J K 2018 Chin. Phys. B 27 035201Google Scholar

    [21]

    Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q, Sheng Z M 2016 Chin. Phys. Lett. 33 095202Google Scholar

    [22]

    Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q, Liu J J 2015 New J. Phys. 17 053039Google Scholar

    [23]

    Liu J J, Yu T P, Yin Y, Zhu X L, Shao F Q 2016 Opt. Express 24 14

    [24]

    Yu T P, Hu L X, Yin Y, Shao F Q, Zhuo H B, Ma Y Y, Yang X H, Luo W, Pukhov A 2014 Appl. Phys. Lett. 105 114101Google Scholar

    [25]

    Luo W, Zhu Y B, Zhuo H B, Ma Y Y, Song Y M, Zhu Z C, Wang X D, Li X H, Turcu I, Chen M 2015 Phys. Plasmas 22 063112Google Scholar

    [26]

    Luo W, Wu S D, Liu W Y, Ma Y Y, Li F Y, Yuan T, Yu J Y, Chen M, Sheng Z M 2018 Plasma Phys. Controlled Fusion 60 095006Google Scholar

    [27]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Rep. 3 1912Google Scholar

    [28]

    Wang W M, Sheng Z M, Gibbon P, Chen L M, Li Y T, Zhang J 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9911Google Scholar

    [29]

    Wang W M, Gibbon P, Sheng Z M, Li Y T, Zhang J 2017 Phys. Rev. E 96 013201Google Scholar

    [30]

    Chen M, Luo J, Li F Y, Liu F, Sheng Z M, Zhang J 2016 Light-Sci. Appl. 5 e16015Google Scholar

    [31]

    Liu J B, Yu J Q, Shou Y R, Wang D H, Hu R H, Tang Y H, Wang P J, Cao Z X, Mei Z S, Lin C, Lu H Y, Zhao Y Y, Zhu K, Yan X Q, Ma W J 2019 Phys. Plasmas 26 033109Google Scholar

    [32]

    Gong Z, Hu R H, Lu H Y, Yu J Q, Wang D H, Fu E G, Chen C E, He X T, Yan X Q 2018 Plasma Phys. Controlled Fusion 60 044004Google Scholar

    [33]

    H X Chang, B Qiao, Y X Zhang, Z Xu, W P Yao, C T Zhou, X T He 2017 Phys. Plasmas 24 043111Google Scholar

    [34]

    Cristoforetti G, Londrillo P, Singh P K et al. 2017 Phys. Plasmas 7 1479Google Scholar

    [35]

    Huang T, Zhou C, Zhang H, Wu S, Qiao B, He X, Ruan S 2017 Appl. Phys. Lett. 110 021102Google Scholar

    [36]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fuison 60 044002Google Scholar

    [37]

    Ribeyre X, d’Humi`eres E, Jansen O, Jequier S, Tikhonchuk V T, Lobet M 2016 Phys. Rev. E 93 013201Google Scholar

    [38]

    Jansen O, d’Humi`eres E, Ribeyre X, Jequier S, Tikhonchuk V T 2018 J. Comput. Phys. 355 582

    [39]

    Pike O J, Mackenroth F, Hill E G, Rose S J 2014 Nat. Photonics 8 434Google Scholar

    [40]

    Ribeyre X, d’Humi`eres E, Jansen O, Jequier S, Tikhonchuk V T 2017 Plasma Phys. Controlled Fusion 59 014024Google Scholar

  • [1] Li Chuan-Ke, Lin Nan-Sheng, Zhou Xian-Xian, Jiang Miao, Li Ying-Jun. Theoretical study of double oscillating fields induced electron-positron pairs creation process. Acta Physica Sinica, 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] Ye Quan-Xing, He Guang-Zhao, Wang Qian. Bottominium-like states in e+e annihilation. Acta Physica Sinica, 2023, 72(20): 201401. doi: 10.7498/aps.72.20230908
    [3] Luo Hui-Yi, Jiang Miao, Xu Miao-Hua, Li Ying-Jun. Electron-position pair creation under combined oscillation fields with different frequencies. Acta Physica Sinica, 2023, 72(2): 021201. doi: 10.7498/aps.72.20221660
    [4] Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng. Time of flight detector for charged particle identification based on circular electron-positron collider. Acta Physica Sinica, 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [5] Xie Bai-Song, Li Lie-Juan, Melike Mohamedsedik, Wang Li. Enhancement effect of frequency chirp on vacuum electron-positron pair production in strong field. Acta Physica Sinica, 2022, 71(13): 131201. doi: 10.7498/aps.71.20220148
    [6] Fan Jia-Kun, Wang Jie, Gao Yong, You Zhi-Ming, Wang Sheng, Zhang Jing, Hu Yao-Cheng, Xu Zhang-Lian, Wang Bin. Thermal-structural coupling analysis of beam screen in super proton-proton collider. Acta Physica Sinica, 2021, 70(1): 012901. doi: 10.7498/aps.70.20200830
    [7] You Zhi-Ming, Wang Jie, Gao Yong, Fan Jia-Kun, Zhang Jing, Hu Yao-Cheng, Wang Sheng, Xu Zhang-Lian, Zhang Qi. Gas density evolution in beam screen of super proton-proton collider. Acta Physica Sinica, 2021, 70(16): 166802. doi: 10.7498/aps.70.20201594
    [8] Zhu Xing-Long, Wang Wei-Min, Yu Tong-Pu, He Feng, Chen Min, Weng Su-Ming, Chen Li-Ming, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields. Acta Physica Sinica, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [9] Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing. Review on laser-driven high-energy polarized electron and positron beams and γ-rays. Acta Physica Sinica, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [10] Jiang Miao, Zheng Xiao-Ran, Lin Nan-Sheng, Li Ying-Jun. Multi-photon transition effects under different external field widths in electron-positron-pair creation process. Acta Physica Sinica, 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [11] Dong Xu, Huang Yong-Sheng, Tang Guang-Yi, Chen Shan-Hong, Si Mei-Yu, Zhang Jian-Yong. Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering. Acta Physica Sinica, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [12] Wu Guang-Zhi, Wang Qiang, Zhou Cang-Tao, Fu Li-Bin. Positron wave interference and Klein tunnel during the production of pairs in the double-well potential. Acta Physica Sinica, 2017, 66(7): 070301. doi: 10.7498/aps.66.070301
    [13] Du Xiao-Qing, Wang Xiao-Hui, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Zhang Yi-Jun, Qiao Jian-Liang. Study of spectral response for transmission-modeNEA GaN photocathodes. Acta Physica Sinica, 2011, 60(5): 057902. doi: 10.7498/aps.60.057902
    [14] Fu Xiao-Qian, Chang Ben-Kang, Li Biao, Wang Xiao-Hui, Qiao Jian-Liang. Comprehensive Survey for the Frontier Disciplines Progress of negative electron affinity GaN photocathode. Acta Physica Sinica, 2011, 60(3): 038503. doi: 10.7498/aps.60.038503
    [15] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Wang Xiao-Hui, Xu Yuan. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [16] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Du Xiao-Qing, Zhang Yi-Jun, Gao Pin, Wang Xiao-Hui, Guo Xiang-Yang, Niu Jun, Gao You-Tang. Study of spectral response characteristics of negative electron affinity GaN photocathode. Acta Physica Sinica, 2010, 59(5): 3577-3582. doi: 10.7498/aps.59.3577
    [17] Qiao Jian-Liang, Tian Si, Chang Ben-Kang, Du Xiao-Qing, Gao Pin. Activation mechanism of negative electron affinity GaN photocathode. Acta Physica Sinica, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [18] Du Xiao-Qing, Chang Ben-Kang. Revision of quantum efficiency formula for negative electron affinity photocathodes. Acta Physica Sinica, 2009, 58(12): 8643-8650. doi: 10.7498/aps.58.8643
    [19] Huang Jin-Shu, Luo Peng-Hui, Lu Gong-Ru. Bottom quark pair production in γγ collision. Acta Physica Sinica, 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [20] . Acta Physica Sinica, 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
Metrics
  • Abstract views:  9332
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2019
  • Accepted Date:  18 October 2019
  • Available Online:  07 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回