Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection

Meng Wen-Dong Zhang Hai-Feng Deng Hua-Rong Tang Kai Wu Zhi-Bo Wang Yu-Rong Wu Guang Zhang Zhong-Ping Chen Xin-Yang

Citation:

1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection

Meng Wen-Dong, Zhang Hai-Feng, Deng Hua-Rong, Tang Kai, Wu Zhi-Bo, Wang Yu-Rong, Wu Guang, Zhang Zhong-Ping, Chen Xin-Yang
PDF
HTML
Get Citation
  • Classical satellite laser ranging (SLR) technology based on 532 nm wavelength usually adopts low energy laser to measure cooperative objects. However, for a very weak target, such as debris and lunar reflector arrays, laser ranging system should have much stronger detection capability than the laser ranging system for traditional application. A common way to improve system detection capability is to use high energy laser. With an additional frequency doubling crystal, it is more difficult to make a high energy laser based on 532 nm than that based on 1.06 μm, which restricts the improvement of system detection capability, and also gives rise to the short lifetime, poor system stability problems. Compared with 532 nm laser, the 1.06 μm laser has many advantages of high laser energy and power, high atmospheric transmissivity, and low background noise, thereby making it an ideal substitution for the traditional 532 nm SLR system. In this paper, we comparatively analyze the above-mentiond advantages of the 1.06 μm laser and other system’s key parameters such as detector efficiency and target reflection efficiency, calculate the echo photons one can obtain, and establish a 1.06 μm laser ranging system based on the existing 532 nm SLR at Shanghai Astronomical Observatory. Owing to the using of an InGaAs single photon detector, the system turns very compact, low cost, easy-to-be-installed and has almost no additional operation complexity than the 532 nm system. With this system, the high precision 1.06 μm laser ranging for cooperative objects based on InGaAs detector is carried out for the first time in China, and a ranging for space debris 1500 km away can also be realized. The ranging experiment shows with the same laser, SLR using 1.06 μm output reaches a detection efficiency of 7 times the detection efficiency the SLR using 532 nm output reaches, and the background noise only 1/5. This approves the advantages and feasibility of 1.06 μm system, and also shows its great potential application prospects in the high precision weak target laser detection in the day and night time. This paper provides a very easy operation, high compact and low cost method for the future high precision weak target laser ranging.
      Corresponding author: Wu Guang, gwu@phy.ecnu.edu.cn ; Zhang Zhong-Ping, zzp@shao.ac.cn
    • Funds: Project supported by the Youth Innovation Promotion Association of CAS (id. 2018303), the National Defense Innovation Fund of the Chinese academy of sciences, China (Grant No. CXJJ-16S009), the National Natural Science Foundation of China (Grant Nos. U1231107, U1631240, 11774095, 11804099)
    [1]

    扈荆夫 2003 博士学位论文 (上海: 中国科学院研究生院 (上海天文台))

    Hu J F 2003 Ph. D. Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) (in Chinese)

    [2]

    秦显平 2003 硕士学位论文 (郑州: 中国人民解放军信息工程大学)

    Qin X P 2003 M.S. Thesis (Zhengzhou: Information Engineering University) (in Chinese)

    [3]

    杨福民, 谭德同, 肖炽焜, 李振宇, 陆文虎, 陈婉珍, 蔡世福, 陈富祥, 张忠平, 胡振琪 1986 科学通报 31 1161

    Yang F M, Tan D T, Xiao Z K, Li Z Y, Lu W H, Chen W Z, Cai S F, Chen F X, Zhang Z P, Hu Z Q 1986 Chin. Sci. Bull. 31 1161

    [4]

    何妙福, Tapley B D, Eanes R J 1980 中国科学: 物理学 力学 天文学 25 636

    He M F, Tapley B D, Eanes R J 1980 Scientia Sinica Physica, Mechanica & Astronomica 25 636

    [5]

    丁剑, 瞿锋, 李谦, 程伯辉 2010 测绘科学 35 5

    Ding J, Qu F, Li Q, Cheng B H 2010 Science of Surveying & Mapping 35 5

    [6]

    朱新慧, 杨力, 孙付平, 王刃 2014 测绘学报 43 240

    Zhu X H, Yang L, Sun F P, Wang R 2014 Acta Geod. Cartogr. Sin. 43 240

    [7]

    Degnan J 2002 J. Geodyn. 34 551Google Scholar

    [8]

    刘静, 王荣兰, 张宏博, 肖佐 2004 空间科学学报 24 462Google Scholar

    Liu J, Wang R L, Zhang H B, Xiao Z 2004 Chin. J. Space Sci. 24 462Google Scholar

    [9]

    张忠萍, 程志恩, 张海峰, 邓华荣, 江海 2017 红外与激光工程 46 8

    Zhang Z P, Cheng Z E, Zhang H F, Deng R H, Jiang H 2017 Infrared Laser Eng. 46 8

    [10]

    宋清丽, 梁智鹏, 董雪, 韩兴伟, 范存波 2016 光学精密工程 24 175

    Song Q L, Liang Z P, Dong X, Han X W, Fan C B 2016 Opt. & Precision Eng. 24 175

    [11]

    李祝莲, 张海涛, 李语强, 伏红林, 翟东升 2017 红外与激光工程 46 269

    Li Z L, Zhang H T, Li Y Q, Fu H L, Zhai D S 2017 Infrared Laser Eng. 46 269

    [12]

    Schreiber U, Haufe K H, Dassing R 1993 8th International Workshop on Laser Ranging Instrumentation Annapolis, MD USA, May 18−22, 1992 p7

    [13]

    Courde C, Torre J M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Feraudy D, Fienga A, Mariey H, Métris G, Viot H, Viswanathan V. Astron. Astrophys. 602 A90

    [14]

    Smith C, Greene B 2006 The Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, September 10−14, 2006 id.E86

    [15]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [16]

    Shell J R 2010 Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI, USA, September 14−17, 2010 p E42

    [17]

    Degnan J J 1993 Contributions of Space Geodesy to Geodynamics: Technology 25 133

    [18]

    Princeton Lightwave Inc. https://sphotonics.ru/upload/iblock/ 21c/pga_series_single_photon_counting_avalanche_photo- diode.pdf [2019-8-20]

    [19]

    Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. Chin. Phys. Mechanics & Astronomy 60 120314

    [20]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535Google Scholar

    [21]

    Jorgensen K, Jarvis K S, Hamada K, Parr-Thumm T L, Africano J L, Stansbery E G 2003 Proc. of the 54th International Astronautical Congress Bremen, Germany, September 29−October 3, 2003 p1

    [22]

    Victoria M, Domínguez C, Askins S, Antón I, Sala G 2012 Jpn. J. Appl. Phys. AM15D 10ND06

    [23]

    杨福民, 肖炽焜, 陈婉珍, 张忠萍, 谭德同, 龚向东, 陈菊平, 黄力, 章建华 1998 中国科学(A辑) 28(11) 1048

    Yang F M, Xiao Z K, Chen W Z, Zhang Z P, Tan D T, Gong X D, Chen J P, Huang L, Zhang J H 1998 Sci. Chin. (Series A) 28(11) 1048

  • 图 1  (a) 1.06 μm和532 nm单程大气透过率随不同仰角变化模型曲线; (b) 1.06 μm和532 nm单双程大气透过率比随不同仰角变化的比例曲线

    Figure 1.  (a) The curve of one-way atmospheric transmissivity at 1.06 μm and 532 nm with different elevation angles; (b) the scale curve of one-way and two-way atmospheric transmissivity at 1.06 μm and 532 nm with different elevation angles.

    图 2  上海天文台1.06 μm激光测距系统和改造框图

    Figure 2.  Diagram of 1.06 μm SLR system in Shanghai Astronomical Observatory.

    图 3  1.06 μm激光测距系统光尖监视图

    Figure 3.  Monitoring picture of the light-cone in 1.06 μm laser ranging system.

    图 4  1.06 μm开展碎片激光测距实时测量界面截图

    Figure 4.  Screenshot of real time 1.06 μm debris laser ranging measurement interface.

    表 1  2016年合作目标激光测距1.06 μm和532 nm波长测距结果和比对表

    Table 1.  The comparison table of cooperative target laser ranging at 1.06 μm and 532 nm.

    圈次仰角均值/(º)轨道高度/kmPoint测距精度/mm回波率噪声密度/个·s–1·m–1
    1.06 μm
    16072019.LES371450764120.518.64%0.622
    16072019. G1483578648914.90.15%0.498
    16072020.G185619140966833.11.83%0.680
    16072020.G17511914071531.70.22%0.700
    16072019. I75135786332518.91.44%0.646
    16072018.G026519140979823.65.10%0.583
    532 nm
    17091802.LES37145010376.43.99%6.574
    17091715.G14835786171310.50.14%8.114
    17082218.G18541914043750.75%
    17082318.G175119140132313.82.32%1.126
    17072720.I55135786130212.30.30%1.616
    17072216.G026519140302611.70.37%6.015
    DownLoad: CSV

    表 2  2019年合作目标导航卫星激光测距1.06 μm和532 nm波长测距结果和比对表

    Table 2.  The comparison table of navigation satellites laser ranging at 1.06 μm and 532 nm in 2019.

    圈次组别仰角均值轨道高度点数测量时长测距精度回波率噪声密度
    /(º)/km/min/mm/个·s–1·m–1
    1901171707.G121G121-1064-24519, 14015421.223.22.142%0.523
    G121-532-1453802.120.10.302%3.36
    1901171719.I5I5-1064-B-15335, 786960.78321.40.204%0.65
    I5-532-2551372.283160.1%3.24
    1901171744.G1G1-10644935, 786450211.50.381%0.51
    G1-532491452.2177.90.109%3.15
    三组数据分别为对俄罗斯Glonass-121卫星, 中国北斗IGSO-5卫星, 中国北斗GEO-1卫星的观测数据, 每组数据的第一行为利用1.06 μm波长的测距结果, 第二行为利用532 nm波长的测距结果.
    DownLoad: CSV
  • [1]

    扈荆夫 2003 博士学位论文 (上海: 中国科学院研究生院 (上海天文台))

    Hu J F 2003 Ph. D. Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) (in Chinese)

    [2]

    秦显平 2003 硕士学位论文 (郑州: 中国人民解放军信息工程大学)

    Qin X P 2003 M.S. Thesis (Zhengzhou: Information Engineering University) (in Chinese)

    [3]

    杨福民, 谭德同, 肖炽焜, 李振宇, 陆文虎, 陈婉珍, 蔡世福, 陈富祥, 张忠平, 胡振琪 1986 科学通报 31 1161

    Yang F M, Tan D T, Xiao Z K, Li Z Y, Lu W H, Chen W Z, Cai S F, Chen F X, Zhang Z P, Hu Z Q 1986 Chin. Sci. Bull. 31 1161

    [4]

    何妙福, Tapley B D, Eanes R J 1980 中国科学: 物理学 力学 天文学 25 636

    He M F, Tapley B D, Eanes R J 1980 Scientia Sinica Physica, Mechanica & Astronomica 25 636

    [5]

    丁剑, 瞿锋, 李谦, 程伯辉 2010 测绘科学 35 5

    Ding J, Qu F, Li Q, Cheng B H 2010 Science of Surveying & Mapping 35 5

    [6]

    朱新慧, 杨力, 孙付平, 王刃 2014 测绘学报 43 240

    Zhu X H, Yang L, Sun F P, Wang R 2014 Acta Geod. Cartogr. Sin. 43 240

    [7]

    Degnan J 2002 J. Geodyn. 34 551Google Scholar

    [8]

    刘静, 王荣兰, 张宏博, 肖佐 2004 空间科学学报 24 462Google Scholar

    Liu J, Wang R L, Zhang H B, Xiao Z 2004 Chin. J. Space Sci. 24 462Google Scholar

    [9]

    张忠萍, 程志恩, 张海峰, 邓华荣, 江海 2017 红外与激光工程 46 8

    Zhang Z P, Cheng Z E, Zhang H F, Deng R H, Jiang H 2017 Infrared Laser Eng. 46 8

    [10]

    宋清丽, 梁智鹏, 董雪, 韩兴伟, 范存波 2016 光学精密工程 24 175

    Song Q L, Liang Z P, Dong X, Han X W, Fan C B 2016 Opt. & Precision Eng. 24 175

    [11]

    李祝莲, 张海涛, 李语强, 伏红林, 翟东升 2017 红外与激光工程 46 269

    Li Z L, Zhang H T, Li Y Q, Fu H L, Zhai D S 2017 Infrared Laser Eng. 46 269

    [12]

    Schreiber U, Haufe K H, Dassing R 1993 8th International Workshop on Laser Ranging Instrumentation Annapolis, MD USA, May 18−22, 1992 p7

    [13]

    Courde C, Torre J M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Feraudy D, Fienga A, Mariey H, Métris G, Viot H, Viswanathan V. Astron. Astrophys. 602 A90

    [14]

    Smith C, Greene B 2006 The Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, September 10−14, 2006 id.E86

    [15]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [16]

    Shell J R 2010 Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI, USA, September 14−17, 2010 p E42

    [17]

    Degnan J J 1993 Contributions of Space Geodesy to Geodynamics: Technology 25 133

    [18]

    Princeton Lightwave Inc. https://sphotonics.ru/upload/iblock/ 21c/pga_series_single_photon_counting_avalanche_photo- diode.pdf [2019-8-20]

    [19]

    Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. Chin. Phys. Mechanics & Astronomy 60 120314

    [20]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535Google Scholar

    [21]

    Jorgensen K, Jarvis K S, Hamada K, Parr-Thumm T L, Africano J L, Stansbery E G 2003 Proc. of the 54th International Astronautical Congress Bremen, Germany, September 29−October 3, 2003 p1

    [22]

    Victoria M, Domínguez C, Askins S, Antón I, Sala G 2012 Jpn. J. Appl. Phys. AM15D 10ND06

    [23]

    杨福民, 肖炽焜, 陈婉珍, 张忠萍, 谭德同, 龚向东, 陈菊平, 黄力, 章建华 1998 中国科学(A辑) 28(11) 1048

    Yang F M, Xiao Z K, Chen W Z, Zhang Z P, Tan D T, Gong X D, Chen J P, Huang L, Zhang J H 1998 Sci. Chin. (Series A) 28(11) 1048

  • [1] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [3] Liao Chen, Yao Ning, Tang Lu-Ping, Shi Wei-Hua, Sun Shao-Ling, Yang Hao-Ran. Near-infrared self-assembled laser based on Ag2Se quantum dots. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231457
    [4] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [5] Shen Shan-Shan, Gu Guo-Hua, Chen Qian, He Rui-Qing, Cao Qing-Qing. Time-space united coding spread spectrum single photon counting imaging method. Acta Physica Sinica, 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [6] Liao Chen, Yao Ning, Tang Lu-Ping, Shi Wei-Hua, Sun Shao-Ling, Yang Hao-Ran. Near-infrared self-assembled laser based on Ag2Se quantum dots. Acta Physica Sinica, 2023, 72(22): 224204. doi: 10.7498/aps.72.20231457
    [7] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [8] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [9] Zhang Hai-Yan, Wang Lin-Li, Wu Chen-Yi, Wang Yu-Rong, Yang Lei, Pan Hai-Feng, Liu Qiao-Li, Guo Xia, Tang Kai, Zhang Zhong-Ping, Wu Guang. Avalanche photodiode single-photon detector with high time stability. Acta Physica Sinica, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [10] Huang Min-Shuang, Ma Peng, Liu Xiao-Chen. Multi-pulse laser ranging method for pre-detection with high frequency resonance. Acta Physica Sinica, 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [11] Bai Peng, Zhang Yue-Heng, Shen Wen-Zhong. Research progress of semiconductor up-conversion single photon detection technology. Acta Physica Sinica, 2018, 67(22): 221401. doi: 10.7498/aps.67.20180618
    [12] Li Tian-Xin, Weng Qian-Chun, Lu Jian, Xia Hui, An Zheng-Hua, Chen Zhang-Hai, Chen Ping-Ping, Lu Wei. Single photon detection and circular polarized emission manipulated with individual quantum dot. Acta Physica Sinica, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [13] Xiao Biao, Zhang Min-Li, Wang Hong-Bo, Liu Ji-Yan. High performence visble-near infrared photovoltaic detector based on narrow bandgap polymer. Acta Physica Sinica, 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [14] Fan Zhong-Wei, Qiu Ji-Si, Tang Xiong-Xin, Bai Zhen-Ao, Kang Zhi-Jun, Ge Wen-Qi, Wang Hao-Cheng, Liu Hao, Liu Yue-Liang. A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting. Acta Physica Sinica, 2017, 66(5): 054205. doi: 10.7498/aps.66.054205
    [15] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [16] Chen Qi-Jie, Zhou Gui-Yao, Shi Fu-Kun, Li Duan-Ming, Yuan Jin-Hui, Xia Chang-Ming, Ge Shu. Study of near-infrared dispersion wave generation for microstructured fiber. Acta Physica Sinica, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [17] Wang Jin, Wei Zheng-Jun, Wang Geng, Guo Li, Wang Jin-Dong, Zhang Zhi-Ming, Guo Jian-Ping, Guo Bang-Hong, Liu Song-Hao. Influence of digital averaging on the signal-to-noise improvement ratio of temperature control system used in single-photon detector at infrared wavelength. Acta Physica Sinica, 2013, 62(1): 014203. doi: 10.7498/aps.62.014203
    [18] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [19] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] Wu Guang, Zhou Chun-Yuan, Chen Xiu-Liang, Han Xiao-Hong, Zeng He-Ping. A stable long-distance quantum key distribution system. Acta Physica Sinica, 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
Metrics
  • Abstract views:  10152
  • PDF Downloads:  178
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2019
  • Accepted Date:  16 October 2019
  • Available Online:  13 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回