Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High performence visble-near infrared photovoltaic detector based on narrow bandgap polymer

Xiao Biao Zhang Min-Li Wang Hong-Bo Liu Ji-Yan

Citation:

High performence visble-near infrared photovoltaic detector based on narrow bandgap polymer

Xiao Biao, Zhang Min-Li, Wang Hong-Bo, Liu Ji-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polymer-based visible-near infrared photodetectors have attracted considerable attention in the recent years due to their unique advantages of low cost of fabrication, compatibility with lightweight/flexible electronics, and wide material sources. Current researches mainly focus on high performence visble-near infrared photovoltaic detector based on narrow bandgap polymer. Device structure of the photodetector is ITO/PEDOT:PSS/photosensitive layer/Ca/Al. The weak light (0.4 mW/cm2, 800 nm) and reverse bias (-2 V) induce insignificant differences in photocurrent among the devices. Current values of 1.69×10-4 A/cm2, 7.96×10-5 A/cm2 and 6.98×10-5 A/cm2 are obtained with photosensitive layer thickness values of 100, 200 and 300 nm, respectively. However, the dark current density-voltage characteristics of the detectors with various thickness values of the photosensitive layer show that reverse bias (-2 V) induces significant differences in current among the devices. Current values of 1.35×10-6 A/cm2, 1.13×10-7 A/cm2 and 2.98×10-8 A/cm2 are obtained with photosensitive layer thickness values of 100 nm, 200 nm and 300 nm, respectively. Meanwhile, all detectors possess high rectification ratios over 105(±2 V), indicating good diode rectification characteristics. Photosensitivity measurements show that detection spectral regions of the detectors are extended from 380 nm to 960 nm. The values of detectivity (D*) of detectors with various thickness values of photosensitive layers are investigated, and the obtained values of D* of tested detectors are found to be very stable in a range from 400 nm to 860 nm, and the average D* value for the 300 nm thick device in this spectral range is as high as 6.89×1012 Jones. The latter compares well with values obtained with silicon detectors. In a range from 800 nm to 900 nm, the estimated detectivities of the 300 nm and 200 nm thick detectors are slightly higher than those obtained with InGaAs devices. Through analyzing energy band diagrams of the polymer photodetectors under reverse voltage bias it could be argued that the relatively weak electric field in the thicker device is the origin of the lower noise current density. The capacitance characteristics of polymer based detectors at high frequency (100 kHz) are examined through capacitance-voltage curves, and the resulting data show that capacitances of all devices at reverse and even small positive voltage are constant. This indicates that the device photosensitive layers are fully depleted and fast signal detections are theoretically possible. The time responses of detectors under near-infrared stimulation are also examined. The output signal appears to rise and fall periodically according to the input signal, suggesting a good repeatability. The rise and fall times for the devices are recorded to be ~5 μs and ~50 μs, indicating that the polymer photodetectors have quick response capabilities.
      Corresponding author: Wang Hong-Bo, hongbo.wang@jhun.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA033400), the National Natural Science Foundation of China (Grant No. 21302232), Hubei Natural Science Foundation, China (Grant No. 2014CFA098), China Postdoctoral Science Foundation, China (Grant No. 2016M600567), the Opening Project of Key Laboratory of Optelectronic Chemical Materials and Devices (Jianghan University), Ministry of Education of China (Grant No. JDGD-201608) and Ouyang Kangle Innovation Fund for Production-Study-Research-Application.
    [1]

    Michel J, Liu J, Kimerling L C 2010 Nat. Photon. 4 527

    [2]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [3]

    Kim S, Lim Y T, Soltesz E G, Grand A M D, Lee J, Nakayama A, Parker J A, Mihaljevic T, Laurence R G, Dor D M, Cohn L H, Bawendi M G, Frangioni J V 2004 Nat. Biotechnol. 22 93

    [4]

    Rogalski A, Chrzanowski K 2002 Opto-Electron. Rev. 10 111

    [5]

    Ettl R, Chao I, Diederich F, Whetten R L 1991 Nature 353 149

    [6]

    Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y 2013 Adv. Mater. 25 4267

    [7]

    Hendriks K H, Li W, Wienk M M, Janssen R A J 2014 J. Am. Chem. Soc. 136 12130

    [8]

    Su Z, Hou F, Wang X, Gao Y, Jin F, Zhang G, Li Y, Zhang L, Chu B, Li W 2015 ACS Appl. Mater. Interfaces 7 2529

    [9]

    Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201

    [10]

    Wang X, Wang H, Huang W, Yu J 2014 Org. Electron. 15 3000

    [11]

    Hu X, Dong Y, Huang F, Gong X, Cao Y 2013 J. Phys. Chem. C 117 6537

    [12]

    Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665

    [13]

    Lim S B, Ji C H, Oh I S, Oh S Y 2016 J. Mater. Chem.C 4 4920

    [14]

    Shafian S, Hwang H, Kim K 2016 Opt. Express 24 25308

    [15]

    Wu S, Xiao B, Zhao B, He Z, Wu H, Cao Y 2016 Small 12 3374

    [16]

    Dou L, Chang W H, Gao J, Chen C C, You J B, Yang Y 2013 Adv. Mater. 25 825

    [17]

    Eo Y S, Rhee H W, Chin B D, Yu G W 2009 Synth. Met. 159 1910

    [18]

    Xie Y, Gong M, Shastry T A, Lohrman J, Hersam M C, Ren S 2013 Adv. Mater. 25 3433

    [19]

    He C, Zhong C, Wu H, Yang R, Yang W, Huang F, Bazan G C, Cao Y 2010 J. Mater. Chem. 20 2617

    [20]

    Wang Z, Safdar M, Jiang C, He J 2012 Nano Lett. 12 4715

    [21]

    Parker I D 1994 J. Appl. Phys. 75 1656

    [22]

    Salamandra L, Susanna G, Penna S, Reale A 2011 IEEE Photon. Tech. L. 23 780

    [23]

    Wang J B, Li W L, Chu B, Lee C S, Su Z S, Zhang G, Wu S H, Yan F 2011 Org. Electron. 12 34

    [24]

    Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y 2007 Adv. Mater. 19 3979

    [25]

    Zhou Y, Wang L, Wang J, Pei J, Cao Y 2008 Adv. Mater. 20 3745

    [26]

    Konstantatos G, Levina L, Tang J, Fisher A, Sargent E H 2008 Nano Lett. 8 1446

    [27]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotech. 8 497

    [28]

    Xie X, Kwok S Y, Lu Z, Liu Y, Cao Y, Luo L, Zapien J A, Bello I, Lee C S, Lee S T, Zhang W 2012 Nanoscale 4 2914

  • [1]

    Michel J, Liu J, Kimerling L C 2010 Nat. Photon. 4 527

    [2]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [3]

    Kim S, Lim Y T, Soltesz E G, Grand A M D, Lee J, Nakayama A, Parker J A, Mihaljevic T, Laurence R G, Dor D M, Cohn L H, Bawendi M G, Frangioni J V 2004 Nat. Biotechnol. 22 93

    [4]

    Rogalski A, Chrzanowski K 2002 Opto-Electron. Rev. 10 111

    [5]

    Ettl R, Chao I, Diederich F, Whetten R L 1991 Nature 353 149

    [6]

    Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y 2013 Adv. Mater. 25 4267

    [7]

    Hendriks K H, Li W, Wienk M M, Janssen R A J 2014 J. Am. Chem. Soc. 136 12130

    [8]

    Su Z, Hou F, Wang X, Gao Y, Jin F, Zhang G, Li Y, Zhang L, Chu B, Li W 2015 ACS Appl. Mater. Interfaces 7 2529

    [9]

    Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201

    [10]

    Wang X, Wang H, Huang W, Yu J 2014 Org. Electron. 15 3000

    [11]

    Hu X, Dong Y, Huang F, Gong X, Cao Y 2013 J. Phys. Chem. C 117 6537

    [12]

    Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665

    [13]

    Lim S B, Ji C H, Oh I S, Oh S Y 2016 J. Mater. Chem.C 4 4920

    [14]

    Shafian S, Hwang H, Kim K 2016 Opt. Express 24 25308

    [15]

    Wu S, Xiao B, Zhao B, He Z, Wu H, Cao Y 2016 Small 12 3374

    [16]

    Dou L, Chang W H, Gao J, Chen C C, You J B, Yang Y 2013 Adv. Mater. 25 825

    [17]

    Eo Y S, Rhee H W, Chin B D, Yu G W 2009 Synth. Met. 159 1910

    [18]

    Xie Y, Gong M, Shastry T A, Lohrman J, Hersam M C, Ren S 2013 Adv. Mater. 25 3433

    [19]

    He C, Zhong C, Wu H, Yang R, Yang W, Huang F, Bazan G C, Cao Y 2010 J. Mater. Chem. 20 2617

    [20]

    Wang Z, Safdar M, Jiang C, He J 2012 Nano Lett. 12 4715

    [21]

    Parker I D 1994 J. Appl. Phys. 75 1656

    [22]

    Salamandra L, Susanna G, Penna S, Reale A 2011 IEEE Photon. Tech. L. 23 780

    [23]

    Wang J B, Li W L, Chu B, Lee C S, Su Z S, Zhang G, Wu S H, Yan F 2011 Org. Electron. 12 34

    [24]

    Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y 2007 Adv. Mater. 19 3979

    [25]

    Zhou Y, Wang L, Wang J, Pei J, Cao Y 2008 Adv. Mater. 20 3745

    [26]

    Konstantatos G, Levina L, Tang J, Fisher A, Sargent E H 2008 Nano Lett. 8 1446

    [27]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotech. 8 497

    [28]

    Xie X, Kwok S Y, Lu Z, Liu Y, Cao Y, Luo L, Zapien J A, Bello I, Lee C S, Lee S T, Zhang W 2012 Nanoscale 4 2914

  • [1] An Tao, Xue Jia-Wei, Wang Yong-Qiang. Characteristics of ternary photodetectors based on benzodithiophene polymers. Acta Physica Sinica, 2021, 70(5): 058801. doi: 10.7498/aps.70.20201185
    [2] Yan Da-Dong, Zhang Xing-Hua. Recent development on the theory of polymer crystallization. Acta Physica Sinica, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [3] Duan Fang-Li, Wang Ming, Liu Jing. Microstructure changes of amorphous polymer film induced by friction. Acta Physica Sinica, 2015, 64(6): 066801. doi: 10.7498/aps.64.066801
    [4] Yang Bing-Yang, He Da-Wei, Wang Yong-Sheng. Effects of bathocuproine/Ag composite anode on the performances of stability polymer photovoltaic devices. Acta Physica Sinica, 2015, 64(10): 108801. doi: 10.7498/aps.64.108801
    [5] Liu Li-Juan, Huang Wen-Bin, Diao Zhi-Hui, Zhang Gui-Yang, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li. Low threshold distributed feedback laser based on scaffolding morphologic and holographic polymer dispersed liquid crystal gratings. Acta Physica Sinica, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [6] Gao Bo-Wen, Gao Chao, Que Wen-Xiu, Wei Wei. Recent development of polymer/fullerene photovoltaic cells. Acta Physica Sinica, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [7] He Zhi-Bing, Yang Zhi-Lin, Yan Jian-Cheng, Song Zhi-Min, Lu Tie-Cheng. Structure and mechanical property of glow discharge polymer. Acta Physica Sinica, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [8] Ma Chen, Zhang Bao-Min, Zhang Li, Ma Yu-Feng, Zhao Wei-Fu. Optically induced light diffraction in photopolymer of fuchsin basic. Acta Physica Sinica, 2010, 59(9): 6266-6272. doi: 10.7498/aps.59.6266
    [9] Shi Jing, Gao Kun, Lei Jie, Xie Shi-Jie. A real space study on the conducting polymer with a ground-state nondegenerate structure. Acta Physica Sinica, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [10] Peng Rui-Xiang, Chen Chong, Shen Wei, Wang Ming-Tai, Guo Ying, Geng Hong-Wei. Amorphous/crystalline blend effects on the performance of polymer-based photovoltaic cells. Acta Physica Sinica, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [11] Li Yang-Gang, She Wei-Long. Perpendicular all-optical control of optical spatial soliton in photoisomerized polymers. Acta Physica Sinica, 2007, 56(2): 895-901. doi: 10.7498/aps.56.895
    [12] Wang Yi-Ping, Chen Jian-Ping, Li Xin-Wan, Zhou Jun-He, Shen Hao, Shi Chang-Hai, Zhang Xiao-Hong, Hong Jian-Xun, Ye Ai-Lun. Fast tunable electro-optic polymer waveguide gratings. Acta Physica Sinica, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [13] Yu Xuan-Yi, Ding Xin, Li Zhuo, Xu Jing-Jun, Zhang Guang-Yin. . Acta Physica Sinica, 2002, 51(6): 1307-1311. doi: 10.7498/aps.51.1307
    [14] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [15] WU CHANG-QIN, ZHANG YU-ZHONG, FU RONG-TANG, SUN XIN. A PRIMARY MODEL INVESTIGATION OF ORGANIC FERROMAGNETS. Acta Physica Sinica, 1999, 48(4): 713-720. doi: 10.7498/aps.48.713
    [16] LI JING-DE, CAO WAN-QIANG, LIU JUN-DIAO, XIAO ZHONG-MO. DIELECTRIC INFORMATION IN THE STRUCTURAL TRANSITION OF POLYMERS. Acta Physica Sinica, 1998, 47(9): 1548-1554. doi: 10.7498/aps.47.1548
    [17] LI JING-DE, CAO WAN-QIANG, WANG YONG. PHENOMENOLOGICAL THEORY OF SLOW POLARIZATION IN POLYMERS. Acta Physica Sinica, 1997, 46(5): 986-993. doi: 10.7498/aps.46.986
    [18] LING FAN, WU CHANG-QIN, SUN XIN. LATTICE VIBRATION SPECTRA OF POLYMERS WITH NONDEGENERATE GROUND STATE. Acta Physica Sinica, 1990, 39(5): 802-808. doi: 10.7498/aps.39.802
    [19] SHUAI ZHI-GANG, SUN XIN, FU ROU-LI. NONLINEAR OPTICAL EFFECTS IN CONDUCTING POLYMERS. Acta Physica Sinica, 1990, 39(3): 375-380. doi: 10.7498/aps.39.375
    [20] ZHENG JIAN-SHENG. MEASUREMENT OF MINUTE RADIOMETRIC QUANTITIES IN THE SPECTRAL RANGE FROM VISIBLE TO NEAR INFRA-RED. Acta Physica Sinica, 1980, 29(3): 286-295. doi: 10.7498/aps.29.286
Metrics
  • Abstract views:  6455
  • PDF Downloads:  231
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2017
  • Accepted Date:  24 July 2017
  • Published Online:  05 November 2017

/

返回文章
返回