-
In this paper, P3HT∶PTB7∶PC61BM is used as an active layer to prepare a ternary heterojunction organic photodetector covering the visible light range. The effects of PTB7 added to P3HT∶PC61BM system on the optical and electrical properties of organic photodetectors (OPDs) are studied by atomic force microscopy, ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. It is found that when the mass ratio of P3HT∶PTB7∶PC61BM is 8∶2∶10, the response spectrum of the ternary mixed layer extends to 780 nm, and the responsivity (R) of OPDs reaches 178, 291, and 241 mA/W respectively under 630, 530, and 460 nm light and –1 V bias, and the specific detection rate (D*) reaches 1012 Jones, and the above results are compared with the research group’s previous results about P3HT∶PBDT-TT-C∶PC61BM as the active layer of ternary organic photodetector. The phenomenon of the device performance gap caused by adding two polymers PTB7 and PBDT-TT-C based on benzo[1, 2-b∶4, 5-b]dithiophene (BDT) units into the same system P3HT∶PC61BM is analyzed. The effect of PTB7 on the micro-morphology of the mixed film due to the introduction of fluorine atoms and the reason for the increase in the mobility of photogenerated carriers in the film are explained. This OPD with better preparation performance provides a theoretical basis and method.
-
Keywords:
- organic photodetector /
- ternaryheterojunction /
- excitondissociation /
- micromorphology
[1] Lochner C M, Khan Y, Pierre A, Arias A C 2014 Nat. Commun. 5 5745Google Scholar
[2] Ross D, Ardalan A, Ajay K P, Paul L M, Paul M 2016 Adv. Mater. 28 4766Google Scholar
[3] Wang W, Zhang F, Li L, Zhang M, An Q, Wang J, Sun Q 2015 J. Mater. Chem. C 3 7386Google Scholar
[4] Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017 Nano Lett. 17 1995Google Scholar
[5] Gong X, Tong M, Xia Y, Cai W, Moon J, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665Google Scholar
[6] Yoo J, Jeong S, Kim S, Je J H 2015 Adv. Mater. 27 1712Google Scholar
[7] Hou J, Park M H, Zhang S, Yao Y, Chen L M, Li J H, Yang Y 2008 Macromolecules 41 6012Google Scholar
[8] Zhang S, Ye L, Zhao W, Liu D, Yao H, Hou J 2014 Macromolecules 47 4653Google Scholar
[9] Xu X, Li Z, Zhang W, Zou X, Di Carlo Rasi D, Ma W, Yartsev A, Andersson M R, Janssen R J, Wang E 2017 Adv. Energy Mater. 2018 8
[10] Liang Y, Feng D, Wu Y, Tsai S T, Li G, Ray C, Yu L 2009 J. Am. Chem. Soc. 131 7792Google Scholar
[11] Liang Y, Wu Y, Feng D, Tsai S T, Son H J, Li G, Yu L 2009 J. Am. Chem. Soc. 131 56Google Scholar
[12] 安涛, 王永强, 张俊 2019 光子学报 48 1004001Google Scholar
An T, Wang Y Q, Zhang J, 2019 Acta Photon. Sin. 48 1004001Google Scholar
[13] Shin H, Kim J, Lee C 2017 J. Korean Phys. Soc. 71 196Google Scholar
[14] Arranz-Andres J, Blau W J 2008 Carbon 46 2067Google Scholar
[15] Bhatia R, Kumar L 2017 J. Saudi Chem. Soc. 21 366Google Scholar
[16] Robb M J, Ku S Y, Brunetti F G, Hawker C J 2013 J. Polym. Sci. Pol. Chem. 51 1263
[17] Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A 2013 Nat. Mater. 12 1037
[18] Xiao M, Zhang K, Jin Y, Yin Q, Zhong W, Huang F, Cao Y 2018 Nano Energy 48 53Google Scholar
[19] Ma X, Zhang F, An Q, Sun Q, Zhang M, Miao J, Hu Z, Zhang J 2017 J. Mater. Chem. A 5 13145Google Scholar
[20] Meng H, Sun F, Goldfinger M B, Jaycox G D, Li Z, Marshall W J, Blackman G S 2005 J. Am. Chem. Soc. 127 2406Google Scholar
[21] Geng Y, Wei Q, Hashimoto K, Tajima K 2011 Chem. Mater. 23 4257Google Scholar
[22] Yuan J, Ford M J, Zhang Y, Dong H, Li Z, Li Y, Ma W 2017 Chem. Mate. 29 1758Google Scholar
[23] Nam S, Seo J, Han H, Kim H, Bradley D D C, Kim Y 2017 Acs Appl. Mater. Inter. 9 14983Google Scholar
[24] Jo J W, Jung J W, Jung E H, Ahn H, Shin T J, Jo W H 2015 Energ. Environ. Sci. 8 2427Google Scholar
[25] Zhang D, Liu C, Li K, Guo W, Gao F, Zhou J, Zhang X, Ruan S 2018 Adv. Opt. Mater. 6 1701189Google Scholar
[26] 朱方云 2018 硕士学位论文 (成都: 电子科技大学)
Zhu F Y 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[27] Thompson B C, Fréchet J M J 2008 Angew. Chem. Int. Edit. 39 58
[28] Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photonics 8 716Google Scholar
[29] 赵旭生 2017 硕士学位论文 (重庆: 西南大学)
Zhao X S 2017 M. S. Thesis (Chongqing: Southwest University) (in Chinese)
-
图 4 不同P3HT∶PTB7∶PC61BM质量比的三元混合活性层薄膜的2D和3D AFM图像 (a), (A) 质量比为10∶0∶10, Rq = 4.32; (b), (B) 质量比为9∶1∶10, Rq = 5.40; (c), (C) 质量比为8∶2∶10, Rq = 6.95; (d), (D) 质量比为7∶3∶10, Rq = 10.93
Figure 4. 2D and 3D AFM images of ternary mixed active layer films with different mass ratios of P3HT∶ PTB7∶ PC61BM∶ (a), (A) 质量比为10∶0∶10, Rq = 4.32; (b), (B) 质量比为9∶1∶10, Rq = 5.40; (c), (C) 质量比为8∶2∶10, Rq = 6.95; (d), (D) 质量比为7∶3∶10, Rq = 10.93.
表 1 –1 V偏压以及三基色光照下P3HT∶PTB7∶PC61BM质量比为8∶2∶10的OPDs特性参数
Table 1. –1 V bias voltage and OPDs characteristic parameters of P3HT∶PTB7∶PC61BM with a mass ratio of 8∶2∶10 under the illumination of three primary colors.
活性层 偏压/V 光波长λ/nm 响应度R/mA·W–1 比探测率D*/Jones 外量子效率EQE/% P3HT∶PTB7∶PC61BM –1 630 178 1.75 × 1012 35 530 291 2.86 × 1012 68 460 241 2.37 × 1012 65 -
[1] Lochner C M, Khan Y, Pierre A, Arias A C 2014 Nat. Commun. 5 5745Google Scholar
[2] Ross D, Ardalan A, Ajay K P, Paul L M, Paul M 2016 Adv. Mater. 28 4766Google Scholar
[3] Wang W, Zhang F, Li L, Zhang M, An Q, Wang J, Sun Q 2015 J. Mater. Chem. C 3 7386Google Scholar
[4] Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017 Nano Lett. 17 1995Google Scholar
[5] Gong X, Tong M, Xia Y, Cai W, Moon J, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665Google Scholar
[6] Yoo J, Jeong S, Kim S, Je J H 2015 Adv. Mater. 27 1712Google Scholar
[7] Hou J, Park M H, Zhang S, Yao Y, Chen L M, Li J H, Yang Y 2008 Macromolecules 41 6012Google Scholar
[8] Zhang S, Ye L, Zhao W, Liu D, Yao H, Hou J 2014 Macromolecules 47 4653Google Scholar
[9] Xu X, Li Z, Zhang W, Zou X, Di Carlo Rasi D, Ma W, Yartsev A, Andersson M R, Janssen R J, Wang E 2017 Adv. Energy Mater. 2018 8
[10] Liang Y, Feng D, Wu Y, Tsai S T, Li G, Ray C, Yu L 2009 J. Am. Chem. Soc. 131 7792Google Scholar
[11] Liang Y, Wu Y, Feng D, Tsai S T, Son H J, Li G, Yu L 2009 J. Am. Chem. Soc. 131 56Google Scholar
[12] 安涛, 王永强, 张俊 2019 光子学报 48 1004001Google Scholar
An T, Wang Y Q, Zhang J, 2019 Acta Photon. Sin. 48 1004001Google Scholar
[13] Shin H, Kim J, Lee C 2017 J. Korean Phys. Soc. 71 196Google Scholar
[14] Arranz-Andres J, Blau W J 2008 Carbon 46 2067Google Scholar
[15] Bhatia R, Kumar L 2017 J. Saudi Chem. Soc. 21 366Google Scholar
[16] Robb M J, Ku S Y, Brunetti F G, Hawker C J 2013 J. Polym. Sci. Pol. Chem. 51 1263
[17] Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A 2013 Nat. Mater. 12 1037
[18] Xiao M, Zhang K, Jin Y, Yin Q, Zhong W, Huang F, Cao Y 2018 Nano Energy 48 53Google Scholar
[19] Ma X, Zhang F, An Q, Sun Q, Zhang M, Miao J, Hu Z, Zhang J 2017 J. Mater. Chem. A 5 13145Google Scholar
[20] Meng H, Sun F, Goldfinger M B, Jaycox G D, Li Z, Marshall W J, Blackman G S 2005 J. Am. Chem. Soc. 127 2406Google Scholar
[21] Geng Y, Wei Q, Hashimoto K, Tajima K 2011 Chem. Mater. 23 4257Google Scholar
[22] Yuan J, Ford M J, Zhang Y, Dong H, Li Z, Li Y, Ma W 2017 Chem. Mate. 29 1758Google Scholar
[23] Nam S, Seo J, Han H, Kim H, Bradley D D C, Kim Y 2017 Acs Appl. Mater. Inter. 9 14983Google Scholar
[24] Jo J W, Jung J W, Jung E H, Ahn H, Shin T J, Jo W H 2015 Energ. Environ. Sci. 8 2427Google Scholar
[25] Zhang D, Liu C, Li K, Guo W, Gao F, Zhou J, Zhang X, Ruan S 2018 Adv. Opt. Mater. 6 1701189Google Scholar
[26] 朱方云 2018 硕士学位论文 (成都: 电子科技大学)
Zhu F Y 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[27] Thompson B C, Fréchet J M J 2008 Angew. Chem. Int. Edit. 39 58
[28] Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photonics 8 716Google Scholar
[29] 赵旭生 2017 硕士学位论文 (重庆: 西南大学)
Zhao X S 2017 M. S. Thesis (Chongqing: Southwest University) (in Chinese)
Catalog
Metrics
- Abstract views: 6451
- PDF Downloads: 80
- Cited By: 0