搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bathocuproine/Ag复合电极对于聚合物光伏器件效率和稳定性的影响

杨冰洋 何大伟 王永生

引用本文:
Citation:

Bathocuproine/Ag复合电极对于聚合物光伏器件效率和稳定性的影响

杨冰洋, 何大伟, 王永生

Effects of bathocuproine/Ag composite anode on the performances of stability polymer photovoltaic devices

Yang Bing-Yang, He Da-Wei, Wang Yong-Sheng
PDF
导出引用
  • 采用Bathocuproine/Ag (BCP/Ag)复合电极代替Ca/Al复合电极, 制备PTB7:PC71BM 作为光敏层的聚合物光伏器件, 并通过改变BCP薄膜厚度来研究BCP/Ag复合电极对于器件光电转换器和稳定性的影响. 研究发现: 在光敏层和金属电极之间插入BCP修饰层后, 器件性能得到了显著的改善, 在BCP厚度为5 nm时, 器件的效率达到了6.82%, 且略高于Ca/Al复合电极的器件效率; 相比于采用Ca/Al复合电极的器件, BCP/Ag复合电极增大了器件的短路电流和外量子效率, 使器件效率得到提高; 同时器件的稳定性得到了显著的改善, BCP/Ag 复合电极器件的衰减速率几乎和未插入BCP的器件衰减速率相同, 相对于Ca/Al复合电极器件大幅提高.
    In this work, the composite anode of BCP/Ag replaces the composite anode of Ca/Al, and the PTB7:PC71BM acts an as active layer for polymer solar cells. Calcium (Ca) is not a desirable candidate as electron extraction layer (EEL) for long-term stability polymer solar cells (PSCs) on account of its nature of active metal. And then, due to the poor stability of Al, which is not a desirable candidate as electrode, the bathocuproine (BCP) layer acts as an exciton blocking layer in organic device such OLEDs and small molecule solar cells, which has a k value that is close to zero for a broad range of wavelengths. The Ag has the nature of better chemical stability and conductivity than Al. In the device architecture described below, we replace the typical back metal electrode composed of a thin Ca layer and a thicker Al electrode by a few nanometer thick bathocuproine (BCP) layer and a thick 150 nm Ag layer. We investigate the effects of BCP thickness on the power conversion efficiency (PCE) and stability. The results reveal that the photovoltaic performances are improved, and a PCE of 6.82% at the 5 nm of BCP thickness, higher than the PCE of Ca/Al acted composite anode, is achieved. The substitution of BCP for Ca, can largely enhance light harvesting and exhibits an optimal light absorption by the active layer. This enhanced reflectivity of the buffer layer/electrode back contact results in an increase of the short circuit current. Compared with the devices of Ca/Al composite anode, it increases Jsc and external quantum efficiency with BCP/Ag composite anode. At the same time, it has the better stability of BCP/Ag composite anode of device, and almost the same PCE decrease ratio as free BCP devices and significantly improves the stability compared with Ca/Al composite anode. The stability test shows the better stability of BCP/Ag as composite anode than that of Ca/Al composite anode. The PCE of the device with Ca/Al as composite anode rapidly decreases by about 70% after 50 hour servicing due to the poor stabilities of Ca and Al. The device with BCP/Ag as composite anode shows favorable stability, owing to the PCE moderate decrease by less than 30% after the same story time. Our results indicate that substitution of BCP/Ag for Ca/Al composite anode is an alternative candidate for high performance and longterm photo stability PSCs.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB932700, 2011CB932703)、 国家自然科学基金(批准号: 61335006, 61378073)和北京市自然科学基金(批准号: 4132031)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700, 2011CB932703), the National Natural Science Foundation of China (Grant Nos. 61335006, 61378073), and the Beijing Natural Science Foundation, China (Grant No. 4132031).
    [1]

    Sariciftci N S, Smilowitz L, Heeger A J, Wudl F 1992 Science 258 1474

    [2]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [3]

    Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S, Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese) [刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢 2014 物理学报 63 068402]

    [4]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [5]

    Williams G, Wang Q, Aziz H 2013 Adv. Funct. Mater. 23 2239

    [6]

    Ma W L, Yang C Y, Gong X, Lee K H, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [7]

    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y 2012 Nat. Photon. 6 591

    [8]

    Guo X, Zhang M, Ma W, Ye L, Zhang S Q, Liu S J, Ade H, Huang F, Hou J H 2014 Adv. Mater. 26 4043

    [9]

    You J B, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [10]

    Pan H B, Zuo L J, Fu W F, Fan C C, Andreasen B, Jiang X Q, Norrman K, Krebs F C, Chen H Z 2013 Org. Electron. 14 797

    [11]

    Shrotriya V, Li G, Yao Y, Chu C W, Yang Y 2006 Appl. Phys. Lett. 88 073508

    [12]

    Zhao C, Qiao X F, Chen B B, Hu B 2013 Org. Electron. 14 2192

    [13]

    Chen B B, Qiao X F, Liu C M, Zhao C, Chen H C, Wei K H, Hu B 2013 Appl. Phys. Lett. 102 193302

    [14]

    Huang Z Y, Li G L, Li K, Zhen H Y, Shen W D, Liu X D, Liu X 2012 Acta Phys. Sin. 61 048801 (in Chinese) [黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭 2012 物理学报 61 048801]

    [15]

    Alberto M O, Xavier E, Rafael B, Jordi M 2013 Adv. Opt. Mater. 1 37

    [16]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Yan G, Kong C, Wang Y S, Xu X R 2011 Chin. Phys. B. 20 068801

    [17]

    Verploegen E, Mondal R, Bettinger C J, Sork S, Tongey M F, Bao Z N 2010 Adv. Funct. Mater. 20 3519

    [18]

    Mihailetchi V D, Xie H X, Boer B D, Koster L J A, Blom P W M 2006 Adv. Funct. Mater. 16 699

    [19]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591

    [20]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese) [李青, 李海强, 赵娟, 黄江, 于军胜 2013 物理学报 62 128803]

    [21]

    Manceau M, Chambon S, Rivaton A, Gardette J L, Guillerez S, Lemaötre N 2010 Sol. Energy Mater. Sol. Cells 94 1572

    [22]

    Gallardo D E, Bertoni C, Dunn S, Gaponik N, Eych-mller A 2007 Adv. Mater. 19 3364

    [23]

    Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V 2010 Org. Electron. 11 1693

    [24]

    Tavakkoli M, Ajeian R, Badrabadi M N, Ardestani S S, Feiz S M H, Nasab K E 2011 Sol. Energy Mater. Sol. Cells 95 1964

    [25]

    Das A J, Narayan K S 2013 Adv. Mater. 25 2193

    [26]

    Cai W Z, Gong X, Cao Y 2010 Sol. Energ. Mater. Sol. C 94 114

    [27]

    Zhao G J, He Y J, Li Y F 2010 Adv. Mater. 22 4355

    [28]

    Zhao G J, He Y J, Xu Z, Hou J H, Zhang M J, Min J, Chen H Y, Ye M F, Hong Z R, Yang Y, Li Y F 2010 Adv. Funct. Mater. 20 1480

    [29]

    Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano Lett. 5 579

    [30]

    Krebs F C, Tromholt T, Jörgensen M 2010 Nanoscale 2 873

  • [1]

    Sariciftci N S, Smilowitz L, Heeger A J, Wudl F 1992 Science 258 1474

    [2]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [3]

    Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S, Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese) [刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢 2014 物理学报 63 068402]

    [4]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [5]

    Williams G, Wang Q, Aziz H 2013 Adv. Funct. Mater. 23 2239

    [6]

    Ma W L, Yang C Y, Gong X, Lee K H, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [7]

    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y 2012 Nat. Photon. 6 591

    [8]

    Guo X, Zhang M, Ma W, Ye L, Zhang S Q, Liu S J, Ade H, Huang F, Hou J H 2014 Adv. Mater. 26 4043

    [9]

    You J B, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [10]

    Pan H B, Zuo L J, Fu W F, Fan C C, Andreasen B, Jiang X Q, Norrman K, Krebs F C, Chen H Z 2013 Org. Electron. 14 797

    [11]

    Shrotriya V, Li G, Yao Y, Chu C W, Yang Y 2006 Appl. Phys. Lett. 88 073508

    [12]

    Zhao C, Qiao X F, Chen B B, Hu B 2013 Org. Electron. 14 2192

    [13]

    Chen B B, Qiao X F, Liu C M, Zhao C, Chen H C, Wei K H, Hu B 2013 Appl. Phys. Lett. 102 193302

    [14]

    Huang Z Y, Li G L, Li K, Zhen H Y, Shen W D, Liu X D, Liu X 2012 Acta Phys. Sin. 61 048801 (in Chinese) [黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭 2012 物理学报 61 048801]

    [15]

    Alberto M O, Xavier E, Rafael B, Jordi M 2013 Adv. Opt. Mater. 1 37

    [16]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Yan G, Kong C, Wang Y S, Xu X R 2011 Chin. Phys. B. 20 068801

    [17]

    Verploegen E, Mondal R, Bettinger C J, Sork S, Tongey M F, Bao Z N 2010 Adv. Funct. Mater. 20 3519

    [18]

    Mihailetchi V D, Xie H X, Boer B D, Koster L J A, Blom P W M 2006 Adv. Funct. Mater. 16 699

    [19]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591

    [20]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese) [李青, 李海强, 赵娟, 黄江, 于军胜 2013 物理学报 62 128803]

    [21]

    Manceau M, Chambon S, Rivaton A, Gardette J L, Guillerez S, Lemaötre N 2010 Sol. Energy Mater. Sol. Cells 94 1572

    [22]

    Gallardo D E, Bertoni C, Dunn S, Gaponik N, Eych-mller A 2007 Adv. Mater. 19 3364

    [23]

    Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V 2010 Org. Electron. 11 1693

    [24]

    Tavakkoli M, Ajeian R, Badrabadi M N, Ardestani S S, Feiz S M H, Nasab K E 2011 Sol. Energy Mater. Sol. Cells 95 1964

    [25]

    Das A J, Narayan K S 2013 Adv. Mater. 25 2193

    [26]

    Cai W Z, Gong X, Cao Y 2010 Sol. Energ. Mater. Sol. C 94 114

    [27]

    Zhao G J, He Y J, Li Y F 2010 Adv. Mater. 22 4355

    [28]

    Zhao G J, He Y J, Xu Z, Hou J H, Zhang M J, Min J, Chen H Y, Ye M F, Hong Z R, Yang Y, Li Y F 2010 Adv. Funct. Mater. 20 1480

    [29]

    Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano Lett. 5 579

    [30]

    Krebs F C, Tromholt T, Jörgensen M 2010 Nanoscale 2 873

  • [1] 周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮. 载流子复合及能量无序对聚合物太阳电池开路电压的影响. 物理学报, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [2] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [3] 陈卓, 方磊, 陈远富. 三维多孔复合碳层对电极的制备及其光伏性能研究. 物理学报, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [4] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [5] 李畅, 薛唯, 韩长峰, 钱磊, 赵谡玲, 喻志农, 章婷, 王岭雪. ZnO电子传输层对于反型结构聚合物太阳电池光浴效应的影响. 物理学报, 2015, 64(8): 088401. doi: 10.7498/aps.64.088401
    [6] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究. 物理学报, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [7] 刘宾礼, 刘德志, 罗毅飞, 唐勇, 汪波. 基于电压电流的IGBT关断机理与关断时间研究. 物理学报, 2013, 62(5): 057202. doi: 10.7498/aps.62.057202
    [8] 祁洪飞, 刘大博, 成波, 郝维昌, 王天民. Ag反点阵列修饰TiO2 薄膜的制备及光催化性能研究. 物理学报, 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [9] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学. 物理学报, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [10] 李海宏, 李冬梅, 刘 文, 李 元, 刘晓静, 刘德胜, 解士杰. 金属/掺杂聚合物/金属结构中载流子的注入与输运. 物理学报, 2008, 57(2): 1117-1122. doi: 10.7498/aps.57.1117
    [11] 哈力木拉提, 阿 拜, 拜 山, 艾买提. p-n结二极管结区边界附近的交流电特性. 物理学报, 2008, 57(2): 1161-1165. doi: 10.7498/aps.57.1161
    [12] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能. 物理学报, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [13] 王 宇, 华玉林, 吴晓明, 张国辉, 惠娟利, 张丽娟, 刘 倩, 印寿根. 发光层和空穴传输层对白色电致发光器件性能的影响. 物理学报, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [14] 董国义, 李晓苇, 韦志仁, 杨少鹏, 韩 理, 傅广生. 微波吸收法研究Mn,Cu掺杂对ZnS:Mn,Cu光生载流子复合过程的影响. 物理学报, 2003, 52(3): 745-750. doi: 10.7498/aps.52.745
    [15] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉, 罗小华. 有机电致发光器件中载流子的输运和复合发光. 物理学报, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [16] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉. 聚合物发光器件中激子的解离与复合效率. 物理学报, 2001, 50(11): 2247-2251. doi: 10.7498/aps.50.2247
    [17] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [18] 郁黎明, 王奇. 载流子影响下铁磁膜中静磁孤子的存在性分析. 物理学报, 2001, 50(5): 958-963. doi: 10.7498/aps.50.958
    [19] 杨达林, 万梅香, 张镜文, 钱人元. 聚N-乙烯基咔唑-2,4,7,三硝基-9-芴酮电荷转移复合物薄膜的载流子迁移率. 物理学报, 1982, 31(12): 104-109. doi: 10.7498/aps.31.104-2
    [20] 黄启圣, 汤定元. 锑化铟中载流子的复合过程. 物理学报, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
计量
  • 文章访问数:  4944
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-19
  • 修回日期:  2014-12-22
  • 刊出日期:  2015-05-05

/

返回文章
返回