搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO电子传输层对于反型结构聚合物太阳电池光浴效应的影响

李畅 薛唯 韩长峰 钱磊 赵谡玲 喻志农 章婷 王岭雪

引用本文:
Citation:

ZnO电子传输层对于反型结构聚合物太阳电池光浴效应的影响

李畅, 薛唯, 韩长峰, 钱磊, 赵谡玲, 喻志农, 章婷, 王岭雪

Effect of ZnO electron-transport layer on light-soaking issue in inverted polymer solar cells

Li Chang, Xue Wei, Han Chang-Feng, Qian Lei, Zhao Su-Ling, Yu Zhi-Nong, Zhang Ting, Wang Ling-Xue
PDF
导出引用
  • 采用金属氧化物电子传输层(ETL)的聚合物光伏器件在制备完成之初通常性能表现低下, J-V曲线呈异常“S”形. 当器件受白光持续照射后, 该不良状况会逐渐好转, 此过程称为光浴(light-soaking). 光浴现象普遍被认为是ETL界面问题所致. 从器件结构着手, 研究了ZnO 纳米颗粒ETL相邻的两个界面在光浴问题上的作用. 制备了功能层相同的(电极除外)正型、反型器件及复合ETL结构器件, 发现光浴现象仅出现于包含ZnO/ITO界面的反型器件中, 证明该界面是导致光浴现象的主要原因. 分析认为: ZnO颗粒表面O2吸附形成的电子陷阱增加了ITO/ZnO势垒厚度, 使得光生电子无法逾越而成为空间电荷积累, 从而导致器件初始性能不佳. 器件经光照后, ETL内部受激而生的空穴电子对填补了ZnO缺陷, 提升了ETL的电荷选择性并减小了界面势垒厚度, 被束缚的光生电子得以隧穿至ITO电极, 反型器件性能最终得以改善.
    A common phenomenon of polymer solar cells with metal oxide electron-transport layers (ETLs), known as “light-soaking” issue, is that the as-prepared device exhibits an anomalous S-shaped J-V characteristic, resulting in an extremely low fill factor (FF) and thus a poor power conversion efficiency. However, the S-shape disappears upon white light illumination with UV spectral components, meanwhile the performance parameters of the device recover the normal values eventually. This behavior appears to be of general validity for various metal oxide layers regardless of the synthesis and fabricating processes. Its origin is still under debate, while the ETL interface problems have generally been claimed to be the underlying reason so far. In this paper, both conventional and inverted cells with using ZnO nanoparticles (NPs) as ETL are fabricated to clarify the interface effect of the ETL on the light soaking procedure. The inverted device shows a typical light-soaking issue with an initial FF less than 20% as expected, whereas the J-V curves of the conventional cell remain regular shapes throughout the test. This result indicates that the ITO/ZnO interface is a key reason of S-shaped J-V characteristics, which is further verified via the use of Cs2CO3/ZnO ETL. The insert of Cs2CO3 layer isolates the ITO electrode from contacting with ZnO layer, and the kink disappears in the as-prepared device with this bi-layered ETL inverted structure. Our explanation for the result above is that the oxygen impurities absorbed onto the surface of ZnO NPs during fabrication process, behave as strong electron traps, and thus increasing the width of the energy barrier (EB) at the interface of ITO/ZnO. Subsequently, photogenerated electrons accumulate in the ZnO layer adjacent to the interface, resulting in extremely poor performance. Upon white light illumination, however, the trap sites are filled by photogenerated carriers within the ZnO layer, and therefore narrowing the EB. As the barrier width becomes thin enough to be freely tunneled through, a good selectivity behavior of ZnO ETL is reached, leading to a fully remarkable recovery in device performances.
    • 基金项目: 国家自然科学基金(批准号: 10904002, 51462003)和教育部留学回国人员科研启动基金(批准号: 20110432001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904002, 51462003) and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No. 20110432001).
    [1]

    Service R F 2011 Science 332 293

    [2]

    Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709

    [3]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591

    [4]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [5]

    Yang Q Q, Yang D B, Zhao S L, Huang Y, Xu Z, Gong W, Fan X, Liu Z F, Huang Q Y, Xu X R 2014 Chin. Phys. B 23 038405

    [6]

    Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S, Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese) [刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢 2014 物理学报 63 068402]

    [7]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J B, Gao J, Hong Z R, Yang Y 2014 Adv. Mater. 26 5670

    [8]

    Krebs F C, Norrman K 2007 Prog. Photovolt.: Res. Appl. 15 697

    [9]

    de Jong M P, van IJzendoorn L J, de Voigt M J A 2000 Appl. Phys. Lett. 77 2255

    [10]

    Kyaw A K K, Sun X W, Jiang C Y, Lo G Q, Zhao D W, Kwong D L 2008 Appl. Phys. Lett. 93 221107

    [11]

    Krebs F C 2009 Sol. Energy Mater. Sol. Cells 93 465

    [12]

    Hau S K, Yip H L, Acton O, Baek N S, Ma H, Jen A K Y 2008 J. Mater. Chem. 18 5113

    [13]

    Chen L M, Hong Z, Li G, Yang Y 2009 Adv. Mater. 21 1434

    [14]

    Tan Z A, Zhang W Q, Zhang Z G, Qian D P, Huang Y, Hou J H, Li Y F 2012 Adv. Mater. 24 1476

    [15]

    Schmidt H, Zilberberg K, Schmale S, Flgge H, Riedl T, Kowalsky W 2010 Appl. Phys. Lett. 96 243305

    [16]

    Trost S, Zilberberg K, Behrendt A, Riedl T 2012 J. Mater. Chem. 22 16224

    [17]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [18]

    Sondergaard R, Helgesen M, Jorgensen M, Krebs F C 2011 Adv. Energy Mater. 1 68

    [19]

    Kim C S, Lee S S, Gomez E D, Kim J B, Loo Y L 2009 Appl. Phys. Lett. 94 113302

    [20]

    Lilliedal M R, Medford A J, Madsen M V, Norrman K, Krebs F C 2010 Sol. Energy Mater. Solar Cells 94 2018

    [21]

    Sista S, Park M H, Hong Z R, Wu Y, Hou J H, Kwan W L, Li G, Yang Y 2010 Adv. Mater. 22 380

    [22]

    Lin Z H, Jiang C Y, Zhu C X, Zhang J 2013 ACS Appl. Mater. Interfaces 5 713

    [23]

    Kim J, Kim G, Choi Y, Lee J, Park S H, Lee K 2012 J. Appl. Phys. 111 114511

    [24]

    Trost S, Zilberberg K, Behrendt A, Polywka A, Görrn P, Reckers P, Maibach J, Mayer T, Riedl T 2013 Adv. Energy Mater. 3 1437

    [25]

    Manor A, Katz E A, Tromholt T, Krebs F C 2012 Sol. Energy Mater. Solar Cells 98 491

    [26]

    Qian L, Zheng Y, Xue J, Holloway P H 2011 Nat. Photon. 5 543

    [27]

    Manor A, Katz E A, Tromholt T, Krebs F C 2011 Adv. Energy Mater. 1 836

    [28]

    Liao H H, Chen L M, Xu Z, Li G, Yang Y 2008 Appl. Phys. Lett. 92 173303

    [29]

    Li Q H, Gao T, Wang Y G, Wang T H 2005 Appl. Phys. Lett. 86 123117

  • [1]

    Service R F 2011 Science 332 293

    [2]

    Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709

    [3]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591

    [4]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [5]

    Yang Q Q, Yang D B, Zhao S L, Huang Y, Xu Z, Gong W, Fan X, Liu Z F, Huang Q Y, Xu X R 2014 Chin. Phys. B 23 038405

    [6]

    Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S, Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese) [刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢 2014 物理学报 63 068402]

    [7]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J B, Gao J, Hong Z R, Yang Y 2014 Adv. Mater. 26 5670

    [8]

    Krebs F C, Norrman K 2007 Prog. Photovolt.: Res. Appl. 15 697

    [9]

    de Jong M P, van IJzendoorn L J, de Voigt M J A 2000 Appl. Phys. Lett. 77 2255

    [10]

    Kyaw A K K, Sun X W, Jiang C Y, Lo G Q, Zhao D W, Kwong D L 2008 Appl. Phys. Lett. 93 221107

    [11]

    Krebs F C 2009 Sol. Energy Mater. Sol. Cells 93 465

    [12]

    Hau S K, Yip H L, Acton O, Baek N S, Ma H, Jen A K Y 2008 J. Mater. Chem. 18 5113

    [13]

    Chen L M, Hong Z, Li G, Yang Y 2009 Adv. Mater. 21 1434

    [14]

    Tan Z A, Zhang W Q, Zhang Z G, Qian D P, Huang Y, Hou J H, Li Y F 2012 Adv. Mater. 24 1476

    [15]

    Schmidt H, Zilberberg K, Schmale S, Flgge H, Riedl T, Kowalsky W 2010 Appl. Phys. Lett. 96 243305

    [16]

    Trost S, Zilberberg K, Behrendt A, Riedl T 2012 J. Mater. Chem. 22 16224

    [17]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [18]

    Sondergaard R, Helgesen M, Jorgensen M, Krebs F C 2011 Adv. Energy Mater. 1 68

    [19]

    Kim C S, Lee S S, Gomez E D, Kim J B, Loo Y L 2009 Appl. Phys. Lett. 94 113302

    [20]

    Lilliedal M R, Medford A J, Madsen M V, Norrman K, Krebs F C 2010 Sol. Energy Mater. Solar Cells 94 2018

    [21]

    Sista S, Park M H, Hong Z R, Wu Y, Hou J H, Kwan W L, Li G, Yang Y 2010 Adv. Mater. 22 380

    [22]

    Lin Z H, Jiang C Y, Zhu C X, Zhang J 2013 ACS Appl. Mater. Interfaces 5 713

    [23]

    Kim J, Kim G, Choi Y, Lee J, Park S H, Lee K 2012 J. Appl. Phys. 111 114511

    [24]

    Trost S, Zilberberg K, Behrendt A, Polywka A, Görrn P, Reckers P, Maibach J, Mayer T, Riedl T 2013 Adv. Energy Mater. 3 1437

    [25]

    Manor A, Katz E A, Tromholt T, Krebs F C 2012 Sol. Energy Mater. Solar Cells 98 491

    [26]

    Qian L, Zheng Y, Xue J, Holloway P H 2011 Nat. Photon. 5 543

    [27]

    Manor A, Katz E A, Tromholt T, Krebs F C 2011 Adv. Energy Mater. 1 836

    [28]

    Liao H H, Chen L M, Xu Z, Li G, Yang Y 2008 Appl. Phys. Lett. 92 173303

    [29]

    Li Q H, Gao T, Wang Y G, Wang T H 2005 Appl. Phys. Lett. 86 123117

  • [1] 孟婧, 高博文. 基于聚合物非富勒烯体系PM6:Y6的钙钛矿/有机集成太阳电池光伏性能优化. 物理学报, 2023, 72(12): 128801. doi: 10.7498/aps.72.20230081
    [2] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响. 物理学报, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [3] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [4] 肖标, 张敏莉, 王洪波, 刘继延. 基于窄带隙聚合物的高性能可见-近红外光伏探测器. 物理学报, 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [5] 李琦, 章勇. 基于聚多巴胺/氧化锌复合阴极缓冲层的倒置聚合物太阳能电池的研究. 物理学报, 2017, 66(19): 198201. doi: 10.7498/aps.66.198201
    [6] 张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进. 氧化锌掺铝绒面薄膜在有机光伏电池中的应用. 物理学报, 2015, 64(17): 178801. doi: 10.7498/aps.64.178801
    [7] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [8] 杨冰洋, 何大伟, 王永生. Bathocuproine/Ag复合电极对于聚合物光伏器件效率和稳定性的影响. 物理学报, 2015, 64(10): 108801. doi: 10.7498/aps.64.108801
    [9] 高松, 赵谡玲, 徐征, 杨一帆, 刘志民, 谢小漪. 氧化锌纳米颗粒薄膜的近紫外电致发光特性研究. 物理学报, 2014, 63(15): 157702. doi: 10.7498/aps.63.157702
    [10] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [11] 耿俊杰, 张军, 张俊, 张义, 丁建军, 孙松, 罗震林, 鲍骏, 高琛. 叠层荧光集光太阳能光伏器件的性能模拟和优化. 物理学报, 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [12] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [13] 张金玲, 吕英华, 喇东升, 廖蕾, 白雪冬. 氧化锌纳米线的紫外光耦合增强场电子发射特性. 物理学报, 2012, 61(12): 128503. doi: 10.7498/aps.61.128503
    [14] 李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭. 基于光学与光—电转换模型对聚合物电池功能层厚度与性能相关性分析. 物理学报, 2011, 60(7): 077207. doi: 10.7498/aps.60.077207
    [15] 秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振. 一维氧化锌纳米结构生长及器件制备研究进展. 物理学报, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [16] 马晨, 张保民, 张立, 马玉峰, 赵维富. 碱性品红光致聚合物薄膜的光致光衍射. 物理学报, 2010, 59(9): 6266-6272. doi: 10.7498/aps.59.6266
    [17] 朱德喜, 甄红宇, 叶辉, 刘旭. 基于空穴注入层摩擦定向的偏振蓝光聚合物电致发光器件. 物理学报, 2009, 58(1): 596-601. doi: 10.7498/aps.58.596
    [18] 彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟. 非晶/结晶共混对聚合物光伏电池性能的影响. 物理学报, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [19] 黎扬钢, 佘卫龙. 光致异构聚合物中光学空间孤子的垂直全光调控. 物理学报, 2007, 56(2): 895-901. doi: 10.7498/aps.56.895
    [20] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
计量
  • 文章访问数:  7749
  • PDF下载量:  606
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-20
  • 修回日期:  2014-11-17
  • 刊出日期:  2015-04-05

/

返回文章
返回