-
采用胶体晶体模板技术和磁控溅射工艺, 通过调制溅射功率, 制备了一系列不同形貌的Ag反点阵列修饰TiO2复合薄膜. 通过扫描电子显微镜(SEM), X射线衍射(XRD), 紫外-可见分光光度计(UV-Vis)和四探针测试仪等手段对样品的结构和光催化性能进行了表征. 实验结果表明: Ag反点阵列的形貌对样品光催化性能有显著影响. 随着反点孔径的减小, 其导电性能迅速提升, 样品的光催化性能逐渐增强. 孔径为710 nm时, 复合薄膜的光催化性能达到最高. 随后, 继续减小孔径, 样品的光催化性能出现了一定程度的下降, 这是载流子损耗增多和遮光面积增大引起的. 经Ag反点阵列修饰的样品的光催化性能均明显优于TiO2薄膜, 主要是由于反点阵列可有效分离光生载流子, 因此使其光催化活性得到显著提高.Ag antidot arrays modified TiO2 films are obtained by PS colloidal crystal template technique and magnetron sputtering method, and the microstructure of Ag antidot array is modulated through controlling the sputtering power. And then, the structural and the photocatalysis performances of all samples are characterized by using scanning electron microscopy, X-ray diffraction, UV-Vis spectrophotometer, and four-point probe. The experimental results show that the microstructure of Ag antidot array significantly influences the photocatalysis performance of the sample. With the diameter of the antidot array decreasing, the photocatalysis performance of the sample is enhanced due to the increase of conducting ability. The photocatalysis performance is highest, when the diameter of the antidot array is 710 nm. Subsequently, with the diameter of the antidot array further decreasing, the photocatalysis performance decreases to a certain extent, which results from the increases of the carrier loss and the light shading area. The photocatalysis performance of Ag antidot array modified TiO2 film is superior to that of TiO2 film. This is attributed to the fact that the Ag antidot array could effectively promote the separation of surface photoinduced charge carrier of TiO2 nanoparticles, which is responsible for the remarkable increase in photocatalytic activity.
-
Keywords:
- Ag antidot arrays /
- TiO2 films /
- photocatalysis performance /
- charge carriers
[1] Zhang X J, Liu Q J, Deng S G, Chen J, Gao P 2011 Acta Phys. Sin. 60 087103 (in Chinese) [张学军, 柳清菊, 邓曙光, 陈娟, 高攀 2011 物理学报 60 087103]
[2] Arconada N, Castro Y, Durán A 2010 Appl. Catal. A 385 101
[3] Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 物理学报 60 098105]
[4] Gutmann S, Wolak M A, Conrad M, Beerbom M M, Schlaf R 2011 J. Appl. Phys. 109 113719
[5] Prasad A K, Jha R, Ramaseshan R, Dash S, Manna I, Tyagi A K 2011 Surf. Eng. 27 350
[6] Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102 (in Chinese) [李天晶, 李公平, 马俊平, 高行新 2011 物理学报 60 116102]
[7] Wang T M, Wang Y 2010 Mater. China 29 60 (in Chinese) [王天民, 王莹 2010 中国材料进展 29 60]
[8] Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029
[9] Zhang Y G, Wang Y X 2011 J. Appl. Phys. 110 033519
[10] Kim K D, Han D N, Lee J B, Kim H T 2006 Scripta Mater. 54 143
[11] Stir M, Nicula R, Burkel E 2006 J. Eur. Ceram. Soc. 26 1547
[12] Wang C M, Zhang Y, Shutthanandan V, Thevuthasan S, Duscher G 2004 J. Appl. Phys. 95 8185
[13] Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437
[14] Nakata K, Udagawa K, Tryk D A, Ochiai T, Nishimoto S, Sakai H, Murakami T, Abe M, Fujishima A 2009 Mater. Lett. 63 1628
[15] Zheng S K, Wang T M, Hao W C, Shen R 2002 Vacuum 65 155
[16] Zhang X W, Zhou M H, Lei L C 2005 Mater. Chem. Phys. 91 73
[17] Zhao, Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]
[18] Qi H F, Hao W C, Xu H Z, Zhang J Y, Wang T M 2009 Colloid. Polym. Sci. 287 243
[19] Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479
-
[1] Zhang X J, Liu Q J, Deng S G, Chen J, Gao P 2011 Acta Phys. Sin. 60 087103 (in Chinese) [张学军, 柳清菊, 邓曙光, 陈娟, 高攀 2011 物理学报 60 087103]
[2] Arconada N, Castro Y, Durán A 2010 Appl. Catal. A 385 101
[3] Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 物理学报 60 098105]
[4] Gutmann S, Wolak M A, Conrad M, Beerbom M M, Schlaf R 2011 J. Appl. Phys. 109 113719
[5] Prasad A K, Jha R, Ramaseshan R, Dash S, Manna I, Tyagi A K 2011 Surf. Eng. 27 350
[6] Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102 (in Chinese) [李天晶, 李公平, 马俊平, 高行新 2011 物理学报 60 116102]
[7] Wang T M, Wang Y 2010 Mater. China 29 60 (in Chinese) [王天民, 王莹 2010 中国材料进展 29 60]
[8] Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029
[9] Zhang Y G, Wang Y X 2011 J. Appl. Phys. 110 033519
[10] Kim K D, Han D N, Lee J B, Kim H T 2006 Scripta Mater. 54 143
[11] Stir M, Nicula R, Burkel E 2006 J. Eur. Ceram. Soc. 26 1547
[12] Wang C M, Zhang Y, Shutthanandan V, Thevuthasan S, Duscher G 2004 J. Appl. Phys. 95 8185
[13] Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437
[14] Nakata K, Udagawa K, Tryk D A, Ochiai T, Nishimoto S, Sakai H, Murakami T, Abe M, Fujishima A 2009 Mater. Lett. 63 1628
[15] Zheng S K, Wang T M, Hao W C, Shen R 2002 Vacuum 65 155
[16] Zhang X W, Zhou M H, Lei L C 2005 Mater. Chem. Phys. 91 73
[17] Zhao, Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]
[18] Qi H F, Hao W C, Xu H Z, Zhang J Y, Wang T M 2009 Colloid. Polym. Sci. 287 243
[19] Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479
计量
- 文章访问数: 7589
- PDF下载量: 460
- 被引次数: 0