搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn,N共掺杂对锐钛矿相TiO2微观结构和性能的影响

张学军 柳清菊 邓曙光 陈娟 高攀

引用本文:
Citation:

Mn,N共掺杂对锐钛矿相TiO2微观结构和性能的影响

张学军, 柳清菊, 邓曙光, 陈娟, 高攀

Effects of Mn and N codoping on microstructure and performance of anatase TiO2

Zhang Xue-Jun, Liu Qing-Ju, Deng Shu-Guang, Chen Juan, Gao Pan
PDF
导出引用
  • 采用第一性原理平面波超软赝势方法,系统研究了Mn,N共掺杂对锐钛矿相TiO2的晶体结构、缺陷形成能、电子结构、光学性质以及氧化还原能力的影响.研究表明:Mn,N共掺杂锐钛矿相TiO2后,TiO2晶格发生了畸变,导致晶体八面体偶极矩增加,有利于光生电子-空穴对的有效分离;在TiO2带隙中出现了杂质能级,使锐钛矿相TiO2的光学吸收带边红移,可见光区的吸收系数明显增大,有利于光催化效率的提高;在不考虑
    The effects of Mn and N codoping on the crystal structure, defect formation energy, electronic structure, optical property and redox ability of anatase TiO2 are investigated by first-principles calculations of plane-wave ultrasoft pseudopotential. The calculation results show that the octahedral dipole moment of anatase TiO2 increases due to its lattice distortion after Mn, N codoping, which is favorable for effective separation of photogenerated electron-hole pairs. Some impurity bands appear in the band gap, which leads to the red-shift of optical absorption edge and to the increase in coefficient of light absorption, thereby facilitating the enhancement of the photocatalytic efficiency. If the impurity band is not taken into account, the band edge redox potential of codoped TiO2 is only slightly changed compared with that of pure TiO2 . All of these results can explain the better photocatalytic performances of Mn, N codoped anatase TiO2 under visible-light irradiation.
    • 基金项目: 国家自然科学基金 (批准号:50862009,51062017)资助的课题.
    [1]

    Arconada N, Castro Y, Durn A 2010 Appl. Catal. A 385 101

    [2]

    Fujishima A, Zhang X T, Tryk D A 2008 Surf. Sci. Rep. 63(12) 515

    [3]
    [4]
    [5]

    Fujishima A, Zhang X T, Tryk D A 2007 Int. J. Hydrogen Energy 32 2664

    [6]
    [7]

    Vougioukalakis G, Stergiopoulos T, Kantonis G, Kontos A, Papadopoulos K, Stublla A, Potvin P, Falaras P 2010 J. Photochem. Photobiol. A 214 22

    [8]
    [9]

    Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M 2002 J. Photochem. Photobiol. A 148 257

    [10]

    Yu H Z, Pen J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese) [於黄忠、彭俊彪、刘金成 2009 物理学报 58 669]

    [11]
    [12]
    [13]

    Yu J X, Fu M, Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [14]

    Lin F, Zheng F W, Ouyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 物理学报 58 193]

    [15]
    [16]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [17]
    [18]
    [19]

    Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721(in Chinese)[徐 凌、唐超群、钱 俊 2010 物理学报 59 2721]

    [20]

    Zhu L, Xie J S, Cui X L, Shen J, Yang X L, Zhang Z J 2010 Vacuum 84 797

    [21]
    [22]
    [23]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [24]

    Liu Y, Wang H Q, Wu Z B 2007 J. Environ. Sci. 19 1505

    [25]
    [26]
    [27]

    Asahi R, Morikawa T, Ohwaki T, Aoki K O, Taga Y 2001 Science 293 269

    [28]
    [29]

    Kang I C, Zhang Q W, Yin S, Sato T, Saito F 2008 Environ. Sci. Technol. 42 3622

    [30]
    [31]

    Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E 2007 Chem. Phys. 339 44

    [32]
    [33]

    Zhang X, Hu Y, Gong Q, Wei C H 2010 Chem. Ind. Eng. Prog. 29 1071(in Chinese)[张 霞、胡 芸、龚 倩、韦朝海 2010 化工进展 29 1071]

    [34]

    Chen S F, Liu W, Zhang S J, Chen Y H 2010 J. Sol-Gel Sci. Technol. 54 258

    [35]
    [36]

    Hu Y, Zhang X, Wei C H 2010 Res. Chem. Intermed. 36 95

    [37]
    [38]
    [39]

    Zhao Z Y, Liu Q J 2008 J. Phys. D 41 025105

    [40]
    [41]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [42]
    [43]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [44]
    [45]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [46]

    Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese)[张学军、高 攀、柳清菊 2010 物理学报 59 4930]

    [47]
    [48]

    Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103

    [49]
    [50]
    [51]

    Gai Y Q, Li J B, Li A S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [52]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [53]
    [54]

    Long R, Niall J 2009 Appl. Phys. Lett. 94 132102

    [55]
    [56]
    [57]

    Ma X, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689

    [58]
    [59]

    Ma X G, Jiang J J, Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese) [马新国、江建军、梁 培 2008 物理学报 57 3120]

    [60]

    Valentin C D, Pacchioni G, Selloni A 2005 Chem. Matter 17 6656

    [61]
    [62]

    Van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [63]
    [64]

    Knauth P, Tutter H L 1999 J. Appl. Phys. 85 897

    [65]
    [66]

    Yang K, Dai Y, Huang B 2007 J. Phys. Chem. C 111 12086

    [67]
    [68]

    Zhu W G, Qiu X F, Iancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B H, Eres G, Zhang Z Y 2009 Phys. Rev. Lett. 103 226401

    [69]
    [70]
    [71]

    Mulliken R S 1934 Chem. Phys. 2 782

    [72]
    [73]

    Mulliken R S 1955 Chem. Phys. 23 1833

    [74]
    [75]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈 琨、范广涵、章 勇、丁少锋 2008 物理学报 57 3138]

    [76]
    [77]

    Sato J, Kobayashi H, Inoue Y 2003 Phys. Chem. B 107 7970

    [78]

    Zhao Z Y, Liu Q J 2008 Catal. Lett. 124 111

    [79]
    [80]

    Le L C, Ma X G, Tang H, Wang Y, Li X, Jiang J J 2010 Acta Phys. Sin. 59 1314 (in Chinese) [乐伶聪、马新国、唐 豪、王 扬、李 翔、江建军 2010 物理学报 59 1314]

    [81]
    [82]
    [83]

    Okato T, Sakano T, Obara M 2005 Phys. Rev. B 72 115124

    [84]
    [85]

    Kim Y I, Atherton S J, Brigham E S, Mallouk T E 1993 Phys. Chem. 97 11802

    [86]

    Yu H F, Zhang Z W, Hu F C 2008 J. Alloys Compd. 465 484

    [87]
    [88]
    [89]

    Tang J W, Ye J H 2005 Chem. Phys. Lett. 410 104

  • [1]

    Arconada N, Castro Y, Durn A 2010 Appl. Catal. A 385 101

    [2]

    Fujishima A, Zhang X T, Tryk D A 2008 Surf. Sci. Rep. 63(12) 515

    [3]
    [4]
    [5]

    Fujishima A, Zhang X T, Tryk D A 2007 Int. J. Hydrogen Energy 32 2664

    [6]
    [7]

    Vougioukalakis G, Stergiopoulos T, Kantonis G, Kontos A, Papadopoulos K, Stublla A, Potvin P, Falaras P 2010 J. Photochem. Photobiol. A 214 22

    [8]
    [9]

    Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M 2002 J. Photochem. Photobiol. A 148 257

    [10]

    Yu H Z, Pen J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese) [於黄忠、彭俊彪、刘金成 2009 物理学报 58 669]

    [11]
    [12]
    [13]

    Yu J X, Fu M, Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [14]

    Lin F, Zheng F W, Ouyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 物理学报 58 193]

    [15]
    [16]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [17]
    [18]
    [19]

    Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721(in Chinese)[徐 凌、唐超群、钱 俊 2010 物理学报 59 2721]

    [20]

    Zhu L, Xie J S, Cui X L, Shen J, Yang X L, Zhang Z J 2010 Vacuum 84 797

    [21]
    [22]
    [23]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [24]

    Liu Y, Wang H Q, Wu Z B 2007 J. Environ. Sci. 19 1505

    [25]
    [26]
    [27]

    Asahi R, Morikawa T, Ohwaki T, Aoki K O, Taga Y 2001 Science 293 269

    [28]
    [29]

    Kang I C, Zhang Q W, Yin S, Sato T, Saito F 2008 Environ. Sci. Technol. 42 3622

    [30]
    [31]

    Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E 2007 Chem. Phys. 339 44

    [32]
    [33]

    Zhang X, Hu Y, Gong Q, Wei C H 2010 Chem. Ind. Eng. Prog. 29 1071(in Chinese)[张 霞、胡 芸、龚 倩、韦朝海 2010 化工进展 29 1071]

    [34]

    Chen S F, Liu W, Zhang S J, Chen Y H 2010 J. Sol-Gel Sci. Technol. 54 258

    [35]
    [36]

    Hu Y, Zhang X, Wei C H 2010 Res. Chem. Intermed. 36 95

    [37]
    [38]
    [39]

    Zhao Z Y, Liu Q J 2008 J. Phys. D 41 025105

    [40]
    [41]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [42]
    [43]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [44]
    [45]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [46]

    Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese)[张学军、高 攀、柳清菊 2010 物理学报 59 4930]

    [47]
    [48]

    Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103

    [49]
    [50]
    [51]

    Gai Y Q, Li J B, Li A S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [52]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [53]
    [54]

    Long R, Niall J 2009 Appl. Phys. Lett. 94 132102

    [55]
    [56]
    [57]

    Ma X, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689

    [58]
    [59]

    Ma X G, Jiang J J, Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese) [马新国、江建军、梁 培 2008 物理学报 57 3120]

    [60]

    Valentin C D, Pacchioni G, Selloni A 2005 Chem. Matter 17 6656

    [61]
    [62]

    Van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [63]
    [64]

    Knauth P, Tutter H L 1999 J. Appl. Phys. 85 897

    [65]
    [66]

    Yang K, Dai Y, Huang B 2007 J. Phys. Chem. C 111 12086

    [67]
    [68]

    Zhu W G, Qiu X F, Iancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B H, Eres G, Zhang Z Y 2009 Phys. Rev. Lett. 103 226401

    [69]
    [70]
    [71]

    Mulliken R S 1934 Chem. Phys. 2 782

    [72]
    [73]

    Mulliken R S 1955 Chem. Phys. 23 1833

    [74]
    [75]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈 琨、范广涵、章 勇、丁少锋 2008 物理学报 57 3138]

    [76]
    [77]

    Sato J, Kobayashi H, Inoue Y 2003 Phys. Chem. B 107 7970

    [78]

    Zhao Z Y, Liu Q J 2008 Catal. Lett. 124 111

    [79]
    [80]

    Le L C, Ma X G, Tang H, Wang Y, Li X, Jiang J J 2010 Acta Phys. Sin. 59 1314 (in Chinese) [乐伶聪、马新国、唐 豪、王 扬、李 翔、江建军 2010 物理学报 59 1314]

    [81]
    [82]
    [83]

    Okato T, Sakano T, Obara M 2005 Phys. Rev. B 72 115124

    [84]
    [85]

    Kim Y I, Atherton S J, Brigham E S, Mallouk T E 1993 Phys. Chem. 97 11802

    [86]

    Yu H F, Zhang Z W, Hu F C 2008 J. Alloys Compd. 465 484

    [87]
    [88]
    [89]

    Tang J W, Ye J H 2005 Chem. Phys. Lett. 410 104

  • [1] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [2] 周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍. Ce和O空位共掺杂TiO2的电子结构与光学性质. 物理学报, 2019, 68(3): 037101. doi: 10.7498/aps.68.20181946
    [3] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [4] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [5] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [6] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [7] 李宗宝, 王霞, 贾礼超. N/Fe共掺杂锐钛矿TiO2(101)面协同作用的第一性原理研究. 物理学报, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [8] 郑树凯, 吴国浩, 刘磊. P掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [9] 张学军, 张光富, 金辉霞, 朱良迪, 柳清菊. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究. 物理学报, 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [10] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [11] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [13] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [14] 祁洪飞, 刘大博, 成波, 郝维昌, 王天民. Ag反点阵列修饰TiO2 薄膜的制备及光催化性能研究. 物理学报, 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [15] 张振铎, 侯清玉, 李聪, 赵春旺. Nd高掺杂锐钛矿相TiO2电子结构和吸收光谱的第一原理研究. 物理学报, 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [16] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [17] 侯清玉, 张 跃, 张 涛. 高氧空位浓度对锐钛矿TiO2莫特相变和光谱红移及电子寿命影响的第一性原理研究. 物理学报, 2008, 57(3): 1862-1866. doi: 10.7498/aps.57.1862
    [18] 赵宗彦, 柳清菊, 朱忠其, 张 瑾. S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响. 物理学报, 2008, 57(6): 3760-3768. doi: 10.7498/aps.57.3760
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
计量
  • 文章访问数:  6800
  • PDF下载量:  912
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-12
  • 修回日期:  2011-03-18
  • 刊出日期:  2011-04-05

/

返回文章
返回