Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-photon transition effects under different external field widths in electron-positron-pair creation process

Jiang Miao Zheng Xiao-Ran Lin Nan-Sheng Li Ying-Jun

Citation:

Multi-photon transition effects under different external field widths in electron-positron-pair creation process

Jiang Miao, Zheng Xiao-Ran, Lin Nan-Sheng, Li Ying-Jun
PDF
HTML
Get Citation
  • Within an oscillating field with high frequency, electron-positron pairs can be generated from vacuum as the result of multi-photon transition process. In this paper, through the computational quantum field theory and the split operator technique, we use a numerical method to solve the spatiotemporally dependent Dirac equation, the result of which enables us to discuss the process of creating electron-positron pair under a time-dependent and spatially localized external field. By monitoring the total number and the energy distribution of created pairs, the effect of the field width on the creating electron-positron pair is discussed.For a wide width, the symmetric transition of single photon transition is dominant, because the momentum of the transition particle is approximately conserved due to a gradually varying space. For an oscillating field with frequency that exceeds the threshold $ 2mc^2$, the energy of a single-photon is sufficient to cross the energy gap between the positive energy continuum and the negative energy continuum. As a result, the electron-positron pairs will be generated continuously, where a transition with symmetric energy has the maximum probability. Meanwhile, higher-order photon transition also arises, especially for three-photon transition with one photon transition completely inside the negative energy continuum. To observe the effect of this photon, we artificially cut the negative energy at a specific value. Accordingly, in the energy distribution of the created pairs, the peak corresponding to three-photon transition disappears, which indicates that the photon inside the negative energy continuum is indispensable in a three-photon transition process. For a narrow field width where the conservation of the momentum breaks down, the production corresponding to the asymmetric transition becomes obvious. In the energy distribution, the peaks representing two-photon transition and three-photon transition become wide and are split into two small peaks. For the three-photon transition, if we cut the negative energy at a specific value, it affects only the peak with lower energy, which indicates a different transition mode of the case corresponding to a wide field. Furthermore, in a narrow field the transition probability of double-photon transition greatly increases, even to a similar order of magnitude of the single photon transition. Apart from transitions with energy equal to integer multiple of the frequency of the photon appearing with asymmetric patterns, there also exists transitions with other energy. The multi-photon transition process of the particles for a narrow field width is more complicated than for a wide field width.
      Corresponding author: Li Ying-Jun, lyj@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974419, 11605286) and the National Key R&D Program of China (Grant No. 2018YFA0404802)
    [1]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

    [2]

    Cowan T, Backe H, Bethge K, et al. 1986 Phys. Rev. Lett. 56 444Google Scholar

    [3]

    Ahmad I, Austin S M, Back B B, et al. 1997 Phys. Rev. Lett. 78 618Google Scholar

    [4]

    Burke D L, Field R C, Horton-Smith G, et al. 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [5]

    Bamber C, Boege S J, Koffas T, et al. 1999 Phys. Rev. D 60 092004Google Scholar

    [6]

    Narozhny N B, Bulanov S S, Mur V D, Popov V S 2004 JETP Lett. 80 382Google Scholar

    [7]

    Di Piazza A 2004 Phys. Rev. D 70 053013Google Scholar

    [8]

    Müller C, Hatsagortsyan K Z, Keitel C H 2008 Phys. Rev. A 78 033408Google Scholar

    [9]

    Ruf M, Mocken G R, Müller C, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 080402Google Scholar

    [10]

    Kirk J G, Bell A R, Arka I 2009 Plasma Phys. Control. Fusion 51 085008Google Scholar

    [11]

    Tang S, Xie B S, Lu D, Wang H Y, Fu L B, Liu J 2013 Phys. Rev. A 88 012106Google Scholar

    [12]

    Liu Y, Lv Q Z, Li Y T, Grobe R, Su Q 2015 Phys. Rev. A 91 052123Google Scholar

    [13]

    Piccinelli G, Sánchez 2017 Phys. Rev. D 96 076014Google Scholar

    [14]

    Li Z L, Xie B S, Li Y J 2019 Phys. Rev. D 100 076018Google Scholar

    [15]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 92 040406Google Scholar

    [16]

    Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R, Su Q 2011 Phys. Rev. A 83 053402Google Scholar

    [17]

    Wöllert A, Klaiber M, Bauke H, Keitel C H 2015 Phys. Rev. D 91 065022Google Scholar

    [18]

    Schützhold R, Gies H, Dunne G 2008 Phys. Rev. Lett. 101 130404Google Scholar

    [19]

    Monin A, Voloshin M B 2010 Phys. Rev. D 81 085014Google Scholar

    [20]

    Jiang M, Su W, Lv Z Q, et al. 2012 Phys. Rev. A 85 033408Google Scholar

    [21]

    Dong S, Unger J, Bryan J, Su Q, Grobe R 2020 Phys. Rev. E 101 013310Google Scholar

    [22]

    Krekora P, Cooley K, Su Q, Grobe R 2005 Phys. Rev. Lett. 95 070403Google Scholar

    [23]

    Jiang M, Lv Q Z, Sheng Z M, Grobe R, Su Q 2013 Phys. Rev. A 87 042503Google Scholar

    [24]

    Lv Q Z, Liu Y, Li Y J, Grobe R, Su Q 2014 Phys. Rev. A 90 013405Google Scholar

    [25]

    Wang Q, Liu J, Fu L B 2016 Sci. Rep. 6 25292Google Scholar

    [26]

    Su D D, Li Y T, Lv Q Z, Zhang J 2020 Phys. Rev. D 101 054501Google Scholar

    [27]

    Braun J W, Su Q, Grobe R 1999 Phys. Rev. A 59 604Google Scholar

    [28]

    Wagner R E, Ware M R, Shields B T, Su Q, Grobe R 2011 Phys. Rev. Lett. 106 023601Google Scholar

    [29]

    Bandrauk A D, Shen H 1994 J. Phys. A: Math. Gen. 27 7147Google Scholar

    [30]

    Mocken G R, Keitel C H 2008 Comput. Phys. Commun. 178 868Google Scholar

    [31]

    Sauter F 1932 Zeitschrift für Physik 73 547Google Scholar

  • 图 1  粒子产生数随外场频率变化关系图. 其中$t=0.002$, 外场强度$V_1=5.5 c^2$, 宽度$W=5/c$

    Figure 1.  Total number of created pairs for different frequencies of the external field. Here $t=0.002$, the field intensity is $V_1=5.5 c^2$ and width is $W=5/c$.

    图 2  多光子跃迁过程示意图, 外场频率为$\omega=2.5 c^2$

    Figure 2.  Schematic diagram of the multiphoton transition, where the frequency of the field is $\omega=2.5 c^2$.

    图 3  外场宽度$W=5/c$时粒子产生量在能量上的概率分布图, 外场频率和强度分别为$\omega=2.5 c^2$, $V_1=8.5 c^2$

    Figure 3.  Energy distribution of the created particles for a wide field width $W=5/c$, where the frequency and intensity of the field are $\omega=2.5 c^2$ and $V_1=8.5 c^2$, respectively.

    图 4  外场宽度$W=1/c$时粒子产生量在能量上的概率分布图, 外场频率和强度分别为$\omega=2.5 c^2$, $V_1=8.5 c^2$

    Figure 4.  Energy distribution of the created particles for a narrow field width $W=1/c$, here the frequency and intensity of the field are $\omega=2.5 c^2$ and $V_1=8.5 c^2$, respectively.

    图 5  场宽较小时多光子跃迁过程示意图

    Figure 5.  Multi-photon transition in a narrow field, where the frequency is $\omega=2.5 c^2$.

    图 6  多光子跃迁过程概率在正负能量上的分布图 (a)场宽$W= $$ 5/c$; (b)场宽$W=1/c$. 其中外场频率为$\omega=2.5 c^2 $, 强度为$V_1=8.5 c^2$

    Figure 6.  Probability of transition between the positive and negative energy: (a) Field width $W=5/c$; (b) field width $W=1/c$. The frequency and intensity of the field are $\omega=2.5 c^2$ and $V_1=8.5 c^2$.

  • [1]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

    [2]

    Cowan T, Backe H, Bethge K, et al. 1986 Phys. Rev. Lett. 56 444Google Scholar

    [3]

    Ahmad I, Austin S M, Back B B, et al. 1997 Phys. Rev. Lett. 78 618Google Scholar

    [4]

    Burke D L, Field R C, Horton-Smith G, et al. 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [5]

    Bamber C, Boege S J, Koffas T, et al. 1999 Phys. Rev. D 60 092004Google Scholar

    [6]

    Narozhny N B, Bulanov S S, Mur V D, Popov V S 2004 JETP Lett. 80 382Google Scholar

    [7]

    Di Piazza A 2004 Phys. Rev. D 70 053013Google Scholar

    [8]

    Müller C, Hatsagortsyan K Z, Keitel C H 2008 Phys. Rev. A 78 033408Google Scholar

    [9]

    Ruf M, Mocken G R, Müller C, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 080402Google Scholar

    [10]

    Kirk J G, Bell A R, Arka I 2009 Plasma Phys. Control. Fusion 51 085008Google Scholar

    [11]

    Tang S, Xie B S, Lu D, Wang H Y, Fu L B, Liu J 2013 Phys. Rev. A 88 012106Google Scholar

    [12]

    Liu Y, Lv Q Z, Li Y T, Grobe R, Su Q 2015 Phys. Rev. A 91 052123Google Scholar

    [13]

    Piccinelli G, Sánchez 2017 Phys. Rev. D 96 076014Google Scholar

    [14]

    Li Z L, Xie B S, Li Y J 2019 Phys. Rev. D 100 076018Google Scholar

    [15]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 92 040406Google Scholar

    [16]

    Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R, Su Q 2011 Phys. Rev. A 83 053402Google Scholar

    [17]

    Wöllert A, Klaiber M, Bauke H, Keitel C H 2015 Phys. Rev. D 91 065022Google Scholar

    [18]

    Schützhold R, Gies H, Dunne G 2008 Phys. Rev. Lett. 101 130404Google Scholar

    [19]

    Monin A, Voloshin M B 2010 Phys. Rev. D 81 085014Google Scholar

    [20]

    Jiang M, Su W, Lv Z Q, et al. 2012 Phys. Rev. A 85 033408Google Scholar

    [21]

    Dong S, Unger J, Bryan J, Su Q, Grobe R 2020 Phys. Rev. E 101 013310Google Scholar

    [22]

    Krekora P, Cooley K, Su Q, Grobe R 2005 Phys. Rev. Lett. 95 070403Google Scholar

    [23]

    Jiang M, Lv Q Z, Sheng Z M, Grobe R, Su Q 2013 Phys. Rev. A 87 042503Google Scholar

    [24]

    Lv Q Z, Liu Y, Li Y J, Grobe R, Su Q 2014 Phys. Rev. A 90 013405Google Scholar

    [25]

    Wang Q, Liu J, Fu L B 2016 Sci. Rep. 6 25292Google Scholar

    [26]

    Su D D, Li Y T, Lv Q Z, Zhang J 2020 Phys. Rev. D 101 054501Google Scholar

    [27]

    Braun J W, Su Q, Grobe R 1999 Phys. Rev. A 59 604Google Scholar

    [28]

    Wagner R E, Ware M R, Shields B T, Su Q, Grobe R 2011 Phys. Rev. Lett. 106 023601Google Scholar

    [29]

    Bandrauk A D, Shen H 1994 J. Phys. A: Math. Gen. 27 7147Google Scholar

    [30]

    Mocken G R, Keitel C H 2008 Comput. Phys. Commun. 178 868Google Scholar

    [31]

    Sauter F 1932 Zeitschrift für Physik 73 547Google Scholar

  • [1] Axikegu, ZHOU Xunxiu, ZHANG Yunfeng. Effects of Thunderstorms Electric Field on Cosmic Ray Secondary Photons at LHAASO. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240341
    [2] Zhu Xiao-Xian, Gao Yi-Tan, Wang Xian-Zhi, Wang Yi-Ming, Wang Ji, Wang Zhao-Hua, Zhao Kun. Research of attosecond pulse train generation and phase information reconstruction. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240292
Metrics
  • Abstract views:  2707
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  10 December 2020
  • Accepted Date:  27 June 2021
  • Available Online:  09 September 2021
  • Published Online:  05 December 2021

/

返回文章
返回