Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase of an infrared laser pulse

Yang Zeng-Qiang Zhang Li-Da

Citation:

Quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase of an infrared laser pulse

Yang Zeng-Qiang, Zhang Li-Da
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the present paper, we investigate the quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase (CEP) of an infrared (IR) laser pulse by numerically solving the time-dependent one-dimensional (1D) two-electron Schrödinger equation. The advantage of the 1D model is that the associated time-dependent Schrodinger equation (TDSE) can be solved numerically with high precision as taking full account of the interaction between the electrons and without making any assumptions about the dominant physical mechanisms. In our study, a single attosecond XUV pulse with broad bandwidth is used to create a wave packet consisting of several doubly-excited states. Helium atoms subjected to the XUV pulse can be ionized through two different pathways: either direct ionization into the continuum or indirect ionization via the autoionization of doubly excited states. The interference of these two paths gives rise to the well-known Fano line shape in the photoabsorption spectrum, which is determined by the ratio and relative phases of the two paths. In the presence of an IR laser pulse, however, we find that the Fano line profiles are strongly modified, in good agreement with recent experimental observations [C. Ott et al., Science 340, 716 (2013); C. Ott et al., Nature 516, 374 (2014)]. At certain time delays, we can observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections, indicating that the XUV light can be amplified during the interaction with atoms. We fit the absorption spectra with the Fano line profiles giving rise to the CEP-dependent Fano q parameters, which are modulated from extremely large positive value to extremely large negative value. Since the q parameter is proportional to the ratio between the dipole matrix of the indirect ionization path and the dipole matrix of the direct ionization path; these results indicate that the quantum interference between the two ionization paths can be efficiently controlled by the CEP of an ultrashort laser pulse, thus offering another possibility (in addition to the laser intensity and the time delay between the XUV pulse and the IR laser) of manipulating the extreme ultrafast electronic motion in atoms. Our predictions can be experimentally verified easily with the present experimental technique.
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101120046).
    [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446 627

    [3]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739

    [4]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [5]

    Schultze M, Fie M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris Th, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdöfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658

    [6]

    Geiseler H, Rottke H, Zhavoronkov N, Sandner W 2012 Phys. Rev. Lett. 108 123601

    [7]

    Mauritsson J, Remetter T, Swoboda M, Klnder K, L'Huillier A, Schafer K J, Ghafur O, Kelkensberg F, Siu W, Johnsson P, Vrakking M J J, Znakovskaya I, Uphues T, Zherebtsov S, Kling M F, L'e pine F, Benedetti E, Ferrari F, Sansone G, Nisoli M 2010 Phys. Rev. Lett. 105 053001

    [8]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601

    [9]

    Chini M, Zhao B, Wang H, Cheng Y, Hu S X, Chang Z 2012 Phys. Rev. Lett. 109 073601

    [10]

    Chen S M, Bell J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408

    [11]

    Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z 2013 Sci. Rep. 3 1105

    [12]

    Fano U 1961 Phys. Rev. 124 1866

    [13]

    Chu W C, Lin C D 2010 Phys. Rev. A 82 053415

    [14]

    Gilbertson S, Chini M, Feng X, Khan S, Wu Y, Chang Z 2010 Phys. Rev. Lett. 105 263002

    [15]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y Z, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374

    [16]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [17]

    Argenti L, Ott C, Pfeifer T, Martin F 2012 ArXiv: 1211.2566

    [18]

    Grobe R, Eberly J H 1992 Phys. Rev. Lett. 68 2905

    [19]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [20]

    Zhao J, Lein M 2012 New J. Phys. 14 065003

    [21]

    van der Zwan E V, Lein M 2012 Phys. Rev. Lett. 108 043004

    [22]

    Baltŭska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611

    [23]

    Song L W, Li C, Wang D, Xu X H, Leng Y X, Li R X, 2011 Acta Phys. Sin. 60 054206 in Chinese 2011 60 054206 (in Chinese) [宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新 2011 物理学报 60 054206]

    [24]

    Zhang M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [25]

    Tian J, Li M, Yu J Z, Deng Y K, Liu Y Q 2014 Chin. Phys. B 23 104211

    [26]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201 (in Chinese) [曾婷婷, 李鹏程, 周效信 2014 物理学报 63 203201]

    [27]

    Tian Y Y, Wei S S, Guo F M, Li S Y, Yang Y J, 2013 Acta Phys. Sin. 62 153202 in Chinese 2013 62 153202 (in Chinese) [田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军 2013 物理学报 62 153202]

    [28]

    Feit M, Fleck J, Steiger A 1982 J. Comput. Phys. 47 412

    [29]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419

  • [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446 627

    [3]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739

    [4]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [5]

    Schultze M, Fie M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris Th, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdöfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658

    [6]

    Geiseler H, Rottke H, Zhavoronkov N, Sandner W 2012 Phys. Rev. Lett. 108 123601

    [7]

    Mauritsson J, Remetter T, Swoboda M, Klnder K, L'Huillier A, Schafer K J, Ghafur O, Kelkensberg F, Siu W, Johnsson P, Vrakking M J J, Znakovskaya I, Uphues T, Zherebtsov S, Kling M F, L'e pine F, Benedetti E, Ferrari F, Sansone G, Nisoli M 2010 Phys. Rev. Lett. 105 053001

    [8]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601

    [9]

    Chini M, Zhao B, Wang H, Cheng Y, Hu S X, Chang Z 2012 Phys. Rev. Lett. 109 073601

    [10]

    Chen S M, Bell J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408

    [11]

    Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z 2013 Sci. Rep. 3 1105

    [12]

    Fano U 1961 Phys. Rev. 124 1866

    [13]

    Chu W C, Lin C D 2010 Phys. Rev. A 82 053415

    [14]

    Gilbertson S, Chini M, Feng X, Khan S, Wu Y, Chang Z 2010 Phys. Rev. Lett. 105 263002

    [15]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y Z, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374

    [16]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [17]

    Argenti L, Ott C, Pfeifer T, Martin F 2012 ArXiv: 1211.2566

    [18]

    Grobe R, Eberly J H 1992 Phys. Rev. Lett. 68 2905

    [19]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [20]

    Zhao J, Lein M 2012 New J. Phys. 14 065003

    [21]

    van der Zwan E V, Lein M 2012 Phys. Rev. Lett. 108 043004

    [22]

    Baltŭska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611

    [23]

    Song L W, Li C, Wang D, Xu X H, Leng Y X, Li R X, 2011 Acta Phys. Sin. 60 054206 in Chinese 2011 60 054206 (in Chinese) [宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新 2011 物理学报 60 054206]

    [24]

    Zhang M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [25]

    Tian J, Li M, Yu J Z, Deng Y K, Liu Y Q 2014 Chin. Phys. B 23 104211

    [26]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201 (in Chinese) [曾婷婷, 李鹏程, 周效信 2014 物理学报 63 203201]

    [27]

    Tian Y Y, Wei S S, Guo F M, Li S Y, Yang Y J, 2013 Acta Phys. Sin. 62 153202 in Chinese 2013 62 153202 (in Chinese) [田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军 2013 物理学报 62 153202]

    [28]

    Feit M, Fleck J, Steiger A 1982 J. Comput. Phys. 47 412

    [29]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419

  • [1] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] He Xin, Li Xin-Yan, Li Jing-Hui, Zhang Zhen-Hua. Magneto-electronic properties and manipulation effects of Fe-adsorbed Sb/WS2 heterostructure. Acta Physica Sinica, 2022, 71(21): 218503. doi: 10.7498/aps.71.20220949
    [3] Xiao Zhi-Lei, Quan Wei, Xu Song-Po, Liu Xiao-Jun, Wei Zheng-Rong, Chen Jing. Low energy structure of above-threshold ionization spectra produced by mid-infrared laser pulses. Acta Physica Sinica, 2022, 71(23): 233208. doi: 10.7498/aps.71.20221609
    [4] Xie Wu, Shen Bin, Zhang Yong-Jun, Guo Chun-Yu, Xu Jia-Cheng, Lu Xin, Yuan Hui-Qiu. Heavy fermion materials and physics. Acta Physica Sinica, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [5] Yao Hong-Bin, Jiang Xiang-Zhan, Cao Chang-Hong, Li Wen-Liang. Theoretical study of dissociation dynamics of HD+ and its quantum control with an intense laser field. Acta Physica Sinica, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [6] Zhang Si-Qi, Lu Jing-Bin, Liu Xiao-Jing, Liu Ji-Ping, Li Hong, Liang Yu, Zhang Xiao-Ru, Liu Han, Wu Xiang-Yao, Guo Yi-Qing. Control of evolutionary atomic system of excited atom by using ideal photonic band-gap model. Acta Physica Sinica, 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [7] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [8] Liu Dan, Hong Wei-Yi, Guo Qi. Propagation of electric field of the few-cycle femtosecond pulse in nonlinear Kerr medium. Acta Physica Sinica, 2016, 65(1): 014208. doi: 10.7498/aps.65.014208
    [9] Ding Jing-Jie, Wang Quan-Jun, Liu Zuo-Ye, Hu Bi-Tao. Theoretical study of the periodic quantum phase modulation of the dipole response in atomic He. Acta Physica Sinica, 2015, 64(24): 243201. doi: 10.7498/aps.64.243201
    [10] Yao Hong-Bin, Li Wen-Liang, Zhang Ji, Peng Min. Quantum control of K2 molecule in an intense laser field:Selective population of dressed states. Acta Physica Sinica, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [11] You Lang-Fang, Ling Wei-Jun, Li Ke, Zhang Ming-Xia, Zuo Yin-Yan, wang Yi-Shan. High efficient CEP-stabilized infrared optical parametric amplifier made from a BBO single crystal. Acta Physica Sinica, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [12] Tian Yuan-Ye, Wei Shan-Shan, Guo Fu-Ming, Li Su-Yu, Yang Yu-Jun. Effect of carrier envelope phase on the above threshold ionization under resonant condition. Acta Physica Sinica, 2013, 62(15): 153202. doi: 10.7498/aps.62.153202
    [13] Huang Xian-Shan, Liu Hai-Lian. The use of dynamic cavity environment to achieve controlling of the process of spontaneous emission of an atom. Acta Physica Sinica, 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [14] Shi Yun-Long, Yang Ya-Ping, Liu Hai-Lian, Huang Xian-Shan. Control of the evolution of an excited atom by using the dynamic Lorentzian reservior. Acta Physica Sinica, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [15] Wang Jian-Liang, Zhang Chun-Mei, Song Li-Wei, Leng Yu-Xin. Measurement of the carrier-envelope phase stability of infrared femtosecond laser pulses by two-path interferometer. Acta Physica Sinica, 2009, 58(6): 3966-3970. doi: 10.7498/aps.58.3966
    [16] Zhang Ji-Yan, Yang Jia-Min, Xu Yan, Yang Guo-Hong, Yan Jun, Meng Guang-Wei, Ding Yao-Nan, Wang Yan. Absorption experiments on radiatively heated Al plasma. Acta Physica Sinica, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [17] Zhu Jiang-Feng, Du Qiang, Wang Xiang-Lin, Teng Hao, Han Hai-Nian, Wei Zhi-Yi, Hou Xun. Carrier-envelope phase measurement and stabilization of amplified Ti:sapphire femtosecond laser pulses by spectral interferometry. Acta Physica Sinica, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [18] Yue Wei-Wei, Wang Wei-Ning, Zhao Guo-Zhong, Zhang Cun-Lin, Yan Hai-Tao. THz spectrum of aromatic amino acid. Acta Physica Sinica, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
    [19] Wang Wei-Tian, Yang Guang, Guan Dong-Yi, Wu Wei-Dong, Chen Zheng-Hao. Optical absorption of Au/BaTiO3,Fe/BaTiO3 nanocomposite films prepared by PLD. Acta Physica Sinica, 2004, 53(3): 932-935. doi: 10.7498/aps.53.932
    [20] Shao Jun. Spectroscopic derivative in optical study of GaInAs/InP and GaInP/AlGaInP multip le quantum wells. Acta Physica Sinica, 2003, 52(10): 2534-2540. doi: 10.7498/aps.52.2534
Metrics
  • Abstract views:  6669
  • PDF Downloads:  249
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2014
  • Accepted Date:  27 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回