搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期量级飞秒脉冲电场在非线性克尔介质中的传输

刘丹 洪伟毅 郭旗

引用本文:
Citation:

周期量级飞秒脉冲电场在非线性克尔介质中的传输

刘丹, 洪伟毅, 郭旗

Propagation of electric field of the few-cycle femtosecond pulse in nonlinear Kerr medium

Liu Dan, Hong Wei-Yi, Guo Qi
PDF
导出引用
  • 采用时间转换法研究了周期量级飞秒脉冲电场在非线性克尔介质中的传输. 由于周期量级飞秒脉冲电场的脉宽小于介质拉曼响应的特征时间, 在传输过程中脉冲电场会发生剧烈的变形和分裂, 并在频谱上观察到了强烈的拉曼感应频移和色散波. 由于周期量级脉冲电场依赖于载波包络相位, 发现在脉冲电场传输过程中, 主脉冲电场和色散波电场的相位线性地依赖于初始脉冲的载波包络相位.
    In this paper, the propagation of a few-cycle femtosecond pulse in a nonlinear Kerr medium is studied by the method of time-transformation. The time-transformation approach can greatly improve the computational efficiency. Because the width of electric field of the few-cycle femtosecond pulse is less than the characteristic time of Raman response in a nonlinear medium, it is observed that the electric field of the pulse experiences a significant deformation and breaks into a Raman soliton and the dispersion waves during the propagation, which can be attributed to strongly nonlocal nonlinearity. A deeper investigation of the time-frequency distributions for both the Raman soliton and the dispersion waves is also included. Since the pulse contains only few cycles, the carrier-envelope phase (CEP) of the pulse plays an important role in the process of nonlinear propagation. The numerical results show the CEP-dependence in the process of nonlinear propagation: the phase changes for both the Raman soliton and the dispersive waves are just equal to the CEP change of the initial pulse, which indicates that the CEP of the pulse is linearly transmitted in the process of nonlinear propagation. This phenomenon can be attributed to the fact that the phase change due to the nonlinearity is only dependent on the intensities of the fields of both the Raman soliton and the dispersion wave, which are unchanged for all the CEPs.
      通信作者: 郭旗, guoq@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274125, 11474109)资助的课题.
      Corresponding author: Guo Qi, guoq@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274125, 11474109).
    [1]

    Nisoli M, de Silvestri S, Svelto O, Szipcs R, Ferencz K, Spielmann C, Sartania S, Krausz F 1997 Opt. Lett. 22 522

    [2]

    Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]

    [3]

    Li Q G, Chen H, Zhang X, Yi X N 2014 Chin. Phys. B 23 074206

    [4]

    Chen Z J, Ye J M, Xu Y B 2015 Chin. Phys. B 24 103203

    [5]

    Zhu J F, Du Q, Wang X L, Teng H, Han H N, Wei Z Y, Hou X 2008 Acta Phys. Sin. 57 7753 (in Chinese) [朱江峰, 杜强, 王向林, 滕浩, 韩海年, 魏志义, 侯洵 2008 物理学报 57 7753]

    [6]

    Zeng H, Wu J, Xu H, Wu K, Wu E 2004 Appl. Phys. B 79 837

    [7]

    Zeng H, Wu J, Xu H, Wu K, Wu E 2004 Phys. Rev. Lett. 92 143903

    [8]

    Zeng H, Wu J, Xu H, Wu K 2006 Phys. Rev. Lett. 96 083902

    [9]

    Agrawal G P 2001 Nonlinear Fiber Opitcs (New York: Academic Press) pp30-55

    [10]

    Liu S B, Liu S Q 2004 Chin. Phys. 13 1892

    [11]

    Xiao Y, Agrawal G P, Maywal D N 2011 Opt. Lett. 36 505

    [12]

    Xiao Y, Agrawal G P, Maywal D N 2012 Opt. Lett. 37 1271

    [13]

    Xiao Y, Agrawal G P, Maywal D N 2012 J. Opt. Soc. Am. B 29 2958

    [14]

    Xiao Y, Maywal D N, Agrawal G P 2013 Opt. Lett. 38 724

    [15]

    Xiao Y, Maywal D N, Agrawal G P 2013 Phys. Rev. A 87 063816

    [16]

    Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086

    [17]

    Thomas B, Ferenc K 1997 Phys. Rev. Lett. 78 3282

    [18]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [19]

    Husakou A V, Herrmann J 2001 Phys. Rev. Lett. 87 203901

    [20]

    Akhmediev N, Karlsson M 1995 Phys. Rev. A 51 2602

    [21]

    Headley C, Agrawal G P 1996 J. Opt. Soc. Am. B 13 2170

    [22]

    Zhang X B, Luo X, Cheng L, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 034204 (in Chinese) [张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延 2014 物理学报 63 034204]

    [23]

    Herrmann J, Griebner U, Zhavoronkov N, Husakoul A, Nickell D, Knight J C, Wadsworth W J, Russell P S J, Korn G 2002 Phys. Rev. Lett. 88 173901

    [24]

    Cristiani I, Tediosi R, Tartara L, Degiorgio V 2004 Opt. Express 12 124

    [25]

    Skryabin D V, Yulin A V 2005 Phys. Rev. E 72 016619

    [26]

    Chang G Q, Chen L J, Krtner F X 2010 Opt. Lett. 35 2361

  • [1]

    Nisoli M, de Silvestri S, Svelto O, Szipcs R, Ferencz K, Spielmann C, Sartania S, Krausz F 1997 Opt. Lett. 22 522

    [2]

    Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]

    [3]

    Li Q G, Chen H, Zhang X, Yi X N 2014 Chin. Phys. B 23 074206

    [4]

    Chen Z J, Ye J M, Xu Y B 2015 Chin. Phys. B 24 103203

    [5]

    Zhu J F, Du Q, Wang X L, Teng H, Han H N, Wei Z Y, Hou X 2008 Acta Phys. Sin. 57 7753 (in Chinese) [朱江峰, 杜强, 王向林, 滕浩, 韩海年, 魏志义, 侯洵 2008 物理学报 57 7753]

    [6]

    Zeng H, Wu J, Xu H, Wu K, Wu E 2004 Appl. Phys. B 79 837

    [7]

    Zeng H, Wu J, Xu H, Wu K, Wu E 2004 Phys. Rev. Lett. 92 143903

    [8]

    Zeng H, Wu J, Xu H, Wu K 2006 Phys. Rev. Lett. 96 083902

    [9]

    Agrawal G P 2001 Nonlinear Fiber Opitcs (New York: Academic Press) pp30-55

    [10]

    Liu S B, Liu S Q 2004 Chin. Phys. 13 1892

    [11]

    Xiao Y, Agrawal G P, Maywal D N 2011 Opt. Lett. 36 505

    [12]

    Xiao Y, Agrawal G P, Maywal D N 2012 Opt. Lett. 37 1271

    [13]

    Xiao Y, Agrawal G P, Maywal D N 2012 J. Opt. Soc. Am. B 29 2958

    [14]

    Xiao Y, Maywal D N, Agrawal G P 2013 Opt. Lett. 38 724

    [15]

    Xiao Y, Maywal D N, Agrawal G P 2013 Phys. Rev. A 87 063816

    [16]

    Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086

    [17]

    Thomas B, Ferenc K 1997 Phys. Rev. Lett. 78 3282

    [18]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [19]

    Husakou A V, Herrmann J 2001 Phys. Rev. Lett. 87 203901

    [20]

    Akhmediev N, Karlsson M 1995 Phys. Rev. A 51 2602

    [21]

    Headley C, Agrawal G P 1996 J. Opt. Soc. Am. B 13 2170

    [22]

    Zhang X B, Luo X, Cheng L, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 034204 (in Chinese) [张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延 2014 物理学报 63 034204]

    [23]

    Herrmann J, Griebner U, Zhavoronkov N, Husakoul A, Nickell D, Knight J C, Wadsworth W J, Russell P S J, Korn G 2002 Phys. Rev. Lett. 88 173901

    [24]

    Cristiani I, Tediosi R, Tartara L, Degiorgio V 2004 Opt. Express 12 124

    [25]

    Skryabin D V, Yulin A V 2005 Phys. Rev. E 72 016619

    [26]

    Chang G Q, Chen L J, Krtner F X 2010 Opt. Lett. 35 2361

  • [1] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220147
    [2] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [3] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [4] 王美洁, 贾维国, 张思远, 乔海龙, 杨军, 张俊萍, 门克内木乐. 拉曼效应对低双折射光纤偏振特性的影响. 物理学报, 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [5] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器. 物理学报, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [6] 王威彬, 杨华, 唐平华, 韩芳. 光子晶体光纤超连续谱产生过程中色散波的孤子俘获研究. 物理学报, 2013, 62(18): 184202. doi: 10.7498/aps.62.184202
    [7] 赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田. 光子晶体光纤包层可见光及红外宽带色散波产生. 物理学报, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [8] 柴宏宇, 贾维国, 韩凤, 门克内木乐, 杨军, 张俊萍. 保偏光纤中在不同频率区域拉曼效应和参量放大增益谱. 物理学报, 2013, 62(4): 044215. doi: 10.7498/aps.62.044215
    [9] 田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军. 共振条件下载波包络相位效应对阈上电离谱的影响. 物理学报, 2013, 62(15): 153202. doi: 10.7498/aps.62.153202
    [10] 吴晓明, 申利莹, 华玉林, 董木森, 穆雪, 白娟娟, 毕文涛, 杨小艳, 印寿根. 利用色彩转换法制备高色稳定性的柔性白色有机电致发光器件. 物理学报, 2012, 61(17): 178502. doi: 10.7498/aps.61.178502
    [11] 孟庆林, 原猛, 牟宏宇, 陈友元, 冯海泓. 包络调制率和载波频率对听觉时间调制检测能力的影响. 物理学报, 2012, 61(16): 164302. doi: 10.7498/aps.61.164302
    [12] 贾维国, 乔丽荣, 王旭颖, 门克内木乐, 杨军, 张俊萍. 拉曼效应和参量放大共同作用下增益谱特性. 物理学报, 2012, 61(19): 194209. doi: 10.7498/aps.61.194209
    [13] 贾维国, 乔丽荣, 王旭颖, 杨军, 张俊萍, 门克内木乐. 双折射光纤中拉曼效应对参量放大增益谱的影响. 物理学报, 2012, 61(9): 094215. doi: 10.7498/aps.61.094215
    [14] 曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初. 掺Er光纤飞秒激光器载波包络位相偏移的探测. 物理学报, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [15] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [16] 王建良, 张春梅, 宋立伟, 冷雨欣. 双光路测量红外飞秒激光脉冲的载波包络相位稳定性. 物理学报, 2009, 58(6): 3966-3970. doi: 10.7498/aps.58.3966
    [17] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [18] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制. 物理学报, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [19] 韩海年, 赵研英, 张 炜, 朱江峰, 王 鹏, 魏志义, 李师群. PPLN晶体差频测量飞秒激光脉冲的载波包络相移. 物理学报, 2007, 56(5): 2756-2759. doi: 10.7498/aps.56.2756
    [20] 韩海年, 魏志义, 张 军, 聂玉昕. 飞秒钛宝石激光脉冲的载波包络相移测量研究. 物理学报, 2005, 54(1): 155-158. doi: 10.7498/aps.54.155
计量
  • 文章访问数:  3607
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-01
  • 修回日期:  2015-08-31
  • 刊出日期:  2016-01-05

周期量级飞秒脉冲电场在非线性克尔介质中的传输

  • 1. 华南师范大学广东省微纳光子功能材料与器件重点实验室, 广州 510006
  • 通信作者: 郭旗, guoq@scnu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11274125, 11474109)资助的课题.

摘要: 采用时间转换法研究了周期量级飞秒脉冲电场在非线性克尔介质中的传输. 由于周期量级飞秒脉冲电场的脉宽小于介质拉曼响应的特征时间, 在传输过程中脉冲电场会发生剧烈的变形和分裂, 并在频谱上观察到了强烈的拉曼感应频移和色散波. 由于周期量级脉冲电场依赖于载波包络相位, 发现在脉冲电场传输过程中, 主脉冲电场和色散波电场的相位线性地依赖于初始脉冲的载波包络相位.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回